Five Coordinate Nickel(II) Isothiocyanato and Chloro Complexes of Triazacycloalkanes

M. NONOYAMA

Department of Chemistry, Faculty of Science, Nagoya University, Chikusa, Nagoya, 464 Japan Received March 3, 1976

The new nickel(II) complexes [Ni(pqr-cy)(NCS)₂], $[Ni(pqr-cy)Cl]ClO_4$, and $Ni_2(pqr-cy)_3(ClO_4)_4 \cdot nH_2O$ (n = 4 or 5) have been prepared, where pqr-cy is a $\dot{N}H(CH_2)_{p}NH(CH_2)_{a}NH(\dot{C}H_2)_{r}$ triazacycloalkane, (p,q=2,3; r=2-6). The isothiocyanato complexes are six-coordinate, NCS-bridged octahedral when t (= p +q+r) is small ($t \leq 9$), but they are five-coordinate when t is large $(t \ge 9)$. The five-coordination is peculiar and its origin is attributable to blocking of a coordination site by the backbone polymethylene groups of the pqr-cy ligands. Only the ligands with t=9 and 10 form the chloro complexes, which are Cl-bridged dimers and are also five-coordinate because of the same steric hindrance. It is worth noting that these five-coordinate nickel(II) complexes are isolated from aqueous solutions. The 2:3 perchlorate complexes are octahedral and available only for the ligands with t=9.

Introduction

A number of complexes with reduced coordination numbers (i.e. four- or five-coordination) are prepared by using ligands containing bulky substituents on the donor atoms. It is also possible to reduce coordination numbers by blocking of coordination sites with backbone polymethylene groups of ligands, as was found in the nickel(II) and copper(II) complexes of 1,4diazacycloheptane and 1,5-diazacyclooctane¹⁻³, and 1,5-diazacyclooctane-N,N'-diacetic acid⁴. Examples of this type of steric blocking are found only rarely and therefore of very interest. It is expected that similar blocking is of importance in determining the stereochemistry of the complexes of triazacycloalkanes, HN(CH₂)_pNH(CH₂)_qNH(ĆH₂)_r (p,q = 2,3;2-6) (abbreviated as pqr-cy) as ligands⁵. With these ligands, another type of blocking may also be important; increased ring size may increase the angle at the metal and thereby reduce the coordination number. To verify these assumptions we have prepared a series of nickel(II) isothiocyanato complexes, [Ni(pqr-cy)

(NCS)₂] and several chloro complexes, [Ni(pqr-cy)

Cl]ClO₄, as a part of our continuing study on triazacycloalkane (pqr-cy) complexes of transition metals⁵.

Results and Discussion

When an aqueous solution of nickel(II) chloride and pqr-cy·3HCl was neutralized with sodium hydroxide and then concentrated in the presence of excess sodium perchlorate, the complex formed depends upon the total number t (=p+q+r) of backbone methylene groups of the pqr-cy ligand. The bis-type complexes [Ni(pqrcy)₂](ClO₄)₂ are obtained for the ligands with small t (≤ 8) and for 225-cy, as has been reported previously⁵. As the ring sizes of the pqr-cy ligands increase, accommodation of six donor atoms proximate to the central metal ion, however, becomes difficult and bistype complexes are no longer available. This is attributed to mutual interactions of backbone methylene groups between the two pqr-cy ligands.

The ligands with t=9 gave both [Ni(pqr-cy)Cl]ClO₄ and Ni₂(pqr-cy)₃(ClO₄)₄ \cdot nH₂O (n=4 or 5), and the ligands with t = 10 except 226-cy formed only the chloro complexes. The ligands with large t (\geq 11) and 226-cy, however, formed no nickel complex under the above conditions and nickel hydroxide precipitated. These facts suggest that the backbone polymethylene groups produce significant steric hindrance which make coordination of the ligands difficult as t increases.

It is remarkable that, in the presence of excess thiocyanate ion, all the pqr-cy ligands studied here formed the same type of complexes $[Ni(pqr-cy) (NCS)_2]$ without precipitation of nickel hydroxide. It seems that the nature of the anion may be the important factor. The complexes prepared are given in Table I together with their colours and analytical data.

$[Ni(pqr-cy)(NCS)_2]$

On the basis of the following spectral data, the complexes $[Ni(pqr-cy)(NCS)_2]$ are classified into two distinct groups. The complexes Nos. 1–6 of Table I fall in group S and those Nos. 7–13 in group F.

TABLE I. Colours and Analytical Data for the Complexes.

Complex		Colour	Analysis, Found (Calcd.) %					
			С	н	N	Other		
1	[Ni(222-cy)(NCS) ₂]	Violet	31.83	5.00	23.31			
2	[Ni(223-cy)(NCS) ₂]	Violet	33.80	5.41	22.18			
3	[Ni(224-cy)(NCS) ₂]	Bluish	36.09	(5.39) 5.76	21.04			
4	[Ni(233-cy)(NCS) ₂]	Violet	35.99	(5.77)	(21.09)			
5	[Ni(234-cy)(NCS) ₂]	Violet-	(36.16) 37.98)	(5.77) 6.13	20.16	Ni:	16.67	
6	[Ni(333-cy)(NCS) ₂]	Blue	(38.17) 38.19	(6.11) 5.94	(20.23) 20.24 (20.22)		(16.96)	
7	[Ni(225-cy)(NCS) ₂]	Violet	(38.17) 37.71	(6.11) 6.14	(20.23)			
8	[Ni(226-cy)(NCS) ₂]	Violet-	(38.17) 39.69	(6.11) 6.35	(20.23) 19.47			
9	[Ni(235-cy)(NCS) ₂]	blue Bluish	(40.02) 39.77	(6.44) 6.32	(19.44) 19.33			
10	[Ni(236-cy)(NCS) ₂]	violet Bluish	(40.02) 41.44	(6.44) 6.65	(19.44) 18.42			
11	[Ni(334-cy)(NCS) ₂]	violet Greenish	(41.73) 39.86	(6.73) 6.54	(18.71) 19.56	Ni:	16.10	
12	[Ni(335-cy)(NCS) ₂]	blue Blue	(40.02) 41.29	(6.44) 6.59	(19.44) 18.53		(16.30)	
13	[Ni(336-cy)(NCS) ₂]	Blue	(41.73) 43.65	(6.73) 7.01	(18.71) 18.01	Ni:	14.87	
14	[Ni(225-cy)Cl]ClO ₄	Greenish	(43.31) 28.91	(7.01) 5.70	(18.04) 11.45	Cl:	(15.12) 9.84	
15	[Ni(234-cy)Cl]ClO ₄	blue Green	(29.62) 29.27	(5.80) 5.82	(11.51) 11.33		(9.72)	
16	[Ni(235-cy)Cl]ClO₄	Bluish	(29.62) 31.69	(5.80) 6.42	(11.51) 10.82			
17	[Ni(333-cy)Cl]ClO₄	green Green	(31.70) 29.99	(6.12) 5.78	(11.09) 11.62			
18	[Ni(334-cy)Cl]ClO4	Green	(29.62) 31.77	(5.80) 6.17	(11.51) 11.24	CI:	9.42	
19	Ni ₂ (225-cy) ₃ (ClO ₄) ₄ · 4H ₂ O	Blue	(31.70) 29.39	(6.12) 6.34	(11.09) 12.01	H ₂ O:	(9.30) 6.25	
20	Ni ₂ (234-cy) ₃ (ClO ₄) ₄ · 5H ₂ O	Blue	(29.45) 29.07	(6.50) 6.28	(11.45) 10.73	H₂O:	(6.54) 7.80	
21	$Ni_2(333-cy)_3(ClO_4)_4 \cdot 5H_2O$	Blue	(28.98) 29.21 (28.98)	(6.57) 6.23 (6.57)	(11.26) 10.84 (11.26)	H ₂ O:	(8.05) 7.97 (8.05)	

The electronic spectra of the solid group S complexes (Figure 1 and Table II) can be assigned based on six-coordinate octahedral nickel(II). The lowest frequency peak (ν_1) is assigned to ${}^{3}A_{2g} \rightarrow {}^{3}T_{2g}$, the second main peak (ν_2) to ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}$ (F), and the highest energy peak (ν_3) to ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}$ (F). The ratios ν_2/ν_1 for the group S complexes are in the range 1.64–1.80, typical values of six-coordinate octahedral nickel(II) complexes^{6, 7}. The three main peaks of the group F complexes are labeled by ν_1 , ν_2 , and ν_3 as shown in Table II and the typical spectral pattern is represented in Figure 1. The ratios v_2/v_1 for the group F complexes are in the range 2.07–2.25, which differ significantly from the normal ratio for octahedral nickel(II) complexes. The ratio has been reported to be close to two in the five-coordinate nickel(II) complex [Ni(Me_4daes)(NCS)_2] (Me_4daes = bis(2-dimethyl-

aminoethyl)sulfide), which has the following fivecoordinate structure [I] with approximately D_{3h} symmetry⁸. The spectra of the group *F* complexes are very similar to that of the Me₄daes complex and the group *F* complexes are, therefore, presumed to have a similar five-coordinate structure [II].

Only the two complexes $[Ni(335-cy)(NCS)_2]$ and $[Ni(336-cy)(NCS)_2]$ are soluble in acetone without colour change, and the spectra of the solutions (Table

Figure 1. Electronic spectra of the solid complexes: (1) $[Ni(222-cy)(NCS)_2]$, (20) $Ni_2(234-cy)_3(CIO_4)_4 \cdot 5H_2O$, (8) $[Ni(226-cy)(NCS)_2]$, and (15) $[Ni(234-cy)Cl]CIO_4$.

TABLE II. Magnetic Moments and Solid Electronic Spectra.

III and Figure 2) show two additional bands between v_1 and v_2 . The large molar extinction coefficients (ε) of the spectra are too large for usual octahedral nickel(II), but typical for five-coordinate nickel(II) complexes⁹. The essential features of the spectra do not significantly differ from those of the solid complexes. Thus these complexes in acetone are also five-coordinate having the same structure [II]. However, it is inadequate to preclude the possibility of a square pyramidal geometry only from the above spectral data.

The infrared spectra of the group S complexes show, at least, one component of $\nu(C=N)$ of NCS above 2100 cm⁻¹ (Table IV) and are similar to those of the complex [Ni(dien)(NCS)₂] (dien = diethylenetriamine) which contains one terminal and one bridged NCS groups as shown in the following dimeric structure [III]¹⁰.

Structure [III] is also reported for $[Ni(Et_4dien)(NCS)_2]$ (Et_4dien = bis(2-diethylaminoethyl)amine)¹¹. The group S complexes may have a related structure

Complex	μ _{eff} ^a (B.M.)	Absorption Maxima, $\times 10^3$ cm ⁻¹						
		ν_1			ν_2		ν_3	
1	3.13		10.7br ^b	15.6sh, w	18.1	22.7sh, w	28.4	
2	3.12		10.4	11.6sh 15.6sh, w	18.1		28.6sh	
3	3.20		9.62	11.1sh	17.3		27.4	
4	3.12	8.3sh, w	10.05	11.1sh, 15.4sh, w	17.6	22.7sh, w	27.6	
5	3.17	8.2sh, w	9.90	15.2sh, w	17.1		27.1	
6	3.19	8.1sh, w, 9.3sh	10.4		17.1		27.0	
7	3.18		8.00	12.9w	17.9		27.5	
8	3.14		7.87	12.9w	17.4		27.0	
9	3.19		8.00	13.2sh, w	17.2		26.7	
10	3.14		8.37	11.4sh, w	17.3		26.9	
11	3.18		7.63	12.7sh, w	16.4		26.1	
12	3.10		7.84	12.6sh, w	16.4		26.0	
13	3.19		7.72	12.3sh, w	16.3	19.6sh, w	25.7	
14	3.18		8.38	10.3sh	15.9		25.7	
15	3.22		7.87	10.2	15.1		25.0	
16	2.93		8.20	10.3sh	15.7		25.4	
17	3.22		8.33	9.3sh	15.2		25.0	
18	3.18		7.75	10.0sh, w	15.2		24.9	
19	3.37		9.48		15.3		26.4	
20	3.20		9.48		15.6		26.5	
21	3.29		9.67		16.1	22.2sh	26.4	

^a At room temperature. ^b br = broad, w = weak, and sh = shoulder.

Complex ^a	^a Solvent	∕1 _М ^ь	Absorption Maxima, $\times 10^3$ cm ⁻¹ (ε) ^c					
			ν ₁		<i>v</i> ₂		<i>v</i> ₃	
12	(CH ₃) ₂ CO	0.8	7.55(41.3)	11.4(7.92) 12.4(7.20)	16.3(52.0)		25.9(164)	
13	(CH ₃) ₂ CO	0.5	7.58(55.3)	11.1(10.1) 12.5(11.4)	16.2(54.8)		25.7(162)	
14	CH ₃ CN	141	8.10(21.0)		16.6(20.5)		26.2(40.2)	
15	CH ₁ CN	140	9.44(7.92)	11.6sh ^d	15.6(14.8)	17.5sh	25.5(20.7)	
16	CH ₃ CN	158	8.20(19.4)	12.8sh	16.5(30.6)		26.2(58.0)	
17	CH ₃ CN	142	9.44(6.09)	11.6sh	15.6(16.3)	17.5sh	25.5(20.0)	
18	CH ₃ CN	132	7.78(19.9)	12.8sh	16.0(46.6)	22.5sh	25.8(88.4)	

TABLE III. Molar Conductances and Electronic Spectra of $5 \times 10^{-3} M$ Solutions at 25° C.

^a Nos. 12 and 13: $[Ni(pqr-cy)(NCS)_2]$ and 14–18: $[Ni(pqr-cy)Cl]ClO_4$ (see Table I). ^b Mho cm²/mol. ^c ε = molar extinction coefficient. ^d sh = shoulder.

Figure 2. Electronic spectra of the complexes in solutions: (13) $[Ni(336-cy)(NCS)_2]$ in acetone, (17) $[Ni(333-cy)Cl]ClO_4$ in acetonitrile, and (18) $[Ni(334-cy)Cl]ClO_4$ in acetonitrile.

[IV] (assignments of p, q, and r to arms are arbitrary), which is consistent with the result of the electronic spectral study.

The infrared spectra of the group F complexes have bands due to $\nu(C \equiv N)$ of NCS below 2100 cm⁻¹ and the spectra resemble that of the five-coordinate [Ni (Me₄daes)(NCS)₂] with two terminal NCS groups (Structure [I]). In the region 200-300 cm⁻¹ the spectra of the group S complexes are more complicated than those of the group F complexes (Table IV). The more complicated pattern may result from the presence of both $\nu(Ni-N)$ and $\nu(Ni-S)$ bands in the former complexes, while the rather simple pattern of the group F complexes may be related to the presence of only ν (Ni–N) bands¹². This interpretation is in agreement with the proposed structures [II] and [IV].

[Ni(pqr-cy)Cl]ClO₄

The complexes $[Ni(pqr-cy)Cl]ClO_4$ are obtained only for the ligands having appreciable steric hindrance of backbone methylene groups (t = 9, 10). The infrared spectra show non-coordination of ClO₄. Coordination of Cl was suggested by the presence of ν (Ni–Cl) bands which appear as two peaks or as one broad absorption (Table IV). The positions of the bands are in the frequency region slightly higher than those of ν (Ni–Cl) expected for octahedral, six-coordinate nickel(II) complexes^{13, 14} but lower than those of ν (Ni–Cl) of five-coordinate nickel(II) complexes¹⁵.

The electronic spectra (Table II and Figure 1) of the solid complexes are significantly different from those of typical octahedral nickel(II) complexes^{8,9}. The ratios ν_2/ν_1 are 1.83–1.93 and the values are, however, intermediate between those for five-coordinate and for six-coordinate nickel(II) complexes discussed above.

The absorption spectra of acetonitrile solutions, in which [Ni(pqr-cy)Cl]ClO₄ show conductivities typical for 1:1 (for monomeric) or 1:2 (for dimeric formulation) electrolytes¹⁶, were measured (Table III). The spectra of [Ni(333-cy)Cl]ClO₄ and [Ni(234-cy)Cl]ClO₄, the colours of which turn light blue upon dissolution, are those of octahedral nickel(II)⁷ and the ratio ν_2/ν_1 is 1.65. However, the spectra of the other [Ni (pqr-cy)Cl]ClO₄ (Nos. 14, 16, and 18) are very intense with different features (Figure 2 and Table III) and the ratio ν_2/ν_1 exceeds two^{6,9}. Five-coordination (Structure [V]) is, therefore, suggested for the latter

Ni(II) Complexes of Triazacycloalkanes

TABLE IV. Infrared Spectra Measured of Nujol Mulls.

	Complex	Absorption, cm ⁻¹					
		ν(N-H)	ν(C≡N)	v(Ni–X) ^a			
1	[Ni(222-cy)(NCS) ₂]	3340, 3275	2128sh ^b , 2115	268br, 255			
		3230	2093, 2050sh	213			
2	$[Ni(223-cy)(NCS)_2]$	3288, 3265	2135sh, 2127sh	278, 263			
		3229	2107, 2099	245, 229			
3	$[Ni(224-cy)(NCS)_2]$	3288, 3250	2123sh, 2103	273, 253			
		3220	2094, 2058sh	232, 221			
4	[Ni(233-cy)(NCS) ₂]	3291, 3258, 3212	2125sh, 2113, 2096	256, 237, 225			
			,	213			
5	$[Ni(234-cy)(NCS)_2]$	3308w, 3286w,	2140, 2119, 2097	234br, 210			
		3245, 3187					
6	$[Ni(333-cy)(NCS)_2]$	3288, 3230, 3178	2127sh, 2118sh	223br, 202			
			2108, 2093	-			
7	$[Ni(225-cy)(NCS)_2]$	3252, 3230, 3185	2099, 2092sh	272, 218			
8	$[Ni(226-cy)(NCS)_2]$	3250, 3212, 3190	2098, 2090sh, 2047sh	271, 241			
9	$[Ni(235-cy)(NCS)_2]$	3315w, 3222	2097, 2076	261, 243			
10	$[Ni(236-cy)(NCS)_2]$	3258, 3202	2095, 2077	251, 241			
11	$[Ni(334-cy)(NCS)_2]$	3264, 3220	2092, 2072	245, 237			
12	$[Ni(335-cy)(NCS)_2]$	3280, 3194	2095, 2080sh	241, 225			
13	$[Ni(336-cy)(NCS)_2]$	3248	2088, 2063	234br			
14	[Ni(225-cy)Cl]ClO ₄	3265, 3318		270, 232			
15	[Ni(234-cy)Cl]ClO ₄	3300, 3263		258, 240			
16	[Ni(235-cy)Cl]ClO ₄	3300, 3265		265, 238			
17	[Ni(333-cy)Cl]ClO ₄	3277		239br			
18	[Ni(334-cy)Cl]ClO ₄	3265		253br			
19	Ni ₂ (225-cy) ₃ (ClO ₄) ₄ · 4H ₂ O	3290, 3245	3510br ^c				
20	$Ni_2(234-cy)_3(ClO_4)_4 \cdot 5H_2O$	3280	3520br ^c				
21	$Ni_2(333-cy)_3(ClO_4)_4 \cdot 5H_2O$	3277, 3200	3535br ^c				

^a X=N, S, or Cl. ^b sh = shoulder, br = broad, and w = weak. $^{c}\nu$ (O-H) of water.

complexes in the solutions. The spectra of the solid complexes are rather similar to those of the latter solutions and a similar five-coordinate structure is assumed for the solid complexes [Ni(pqr-cy)Cl]ClO₄. The bridging nature of the chloride ions may lead to the lower frequency ν (Ni–Cl) bands than those of terminal Ni–Cl bonds of five-coordinate nickel(II) complexes^{13–15}. The same Cl-bridged dimer has been previously adopted for the copper complexes of composition [Cu(pqr-cy)Cl]ClO₄⁵.

$Ni_2(pqr-cy)_3(ClO_4)_4 \cdot nH_2O$ (n = 4 or 5)

The complexes of this type are obtained only for the ligands with t = 9 containing appreciable steric hindrance. The infrared spectra show bands due to ν (N–H) of the coordinated secondary amino groups and those due to ν (O–H) of water in the expected regions¹⁷, and also show non-coordination of ClO₄. The electronic spectra of the solid state complexes are typical of octahedral, six-coordinate nickel(II) complexes⁷. The structures are, however, difficult to envisage.

Conclusions

The ligands with t = 9 are of very interest, since the properties of the complexes change discontinuously at this point. The complexes [Ni(pqr-cy)(NCS)₂] are six-coordinate for the ligands with t<9, but five-coordinate for the ligands with t>9. For the ligands with t = 9, the complex [Ni(225-cy)(NCS)₂] is five- and $[Ni(234-cy)(NCS)_2]$ and $[Ni(333-cy)(NCS)_2]$ are six-coordinate. The same is true for [Ni(pqr-cy)Cl] ClO₄ in acetonitrile: the species in the solutions is five- for 225-cy and six-coordinate for 234-cy and 333-cy. A coordination site of nickel(II) is, thus, more effectively blocked by the backbone polymethylene groups of 225-cy than by those of 234-cy and 333-cy. The fact that, under the conditions under which 235-cy and 334-cy form [Ni(pqr-cy)Cl]ClO₄, 226-cy forms no complex with precipitation of nickel hydroxide is closely related. These facts may indicate that when t is the same, the larger the size of a backbone methylene group is, the more effective the steric hindrance of the group becomes.

Experimental

Preparation of the Complexes

Colours and analytical data are given in Table I.

$[Ni(pqr-cy)(NCS)_2]$

A hot aqueous solution (50 ml) containing 2 mmol of pqr-cy·3HCl, 2 mmol of NiCl₂·6H₂O, and 10 mmol of KNCS was neutralized by addition of 6 mmol of NaOH dissolved in 10 ml of water and allowed to stand few hours. The solution was concentrated on a steam bath if required. A precipitate was washed with water and dried in air. The yield was *ca*. 60-80%.

$[Ni(pqr-cy)Cl]ClO_4$

To a hot aqueous solution (30 ml) of 2 mmol of pqr-cy·3HCl and 2 mmol of NiCl₂·6H₂O was added 6 mmol of NaOH in 5 ml of water and the mixture was stirred for about ten minutes on a hot plate to complete reaction. The mixture was filtered and to the filtrate was added 10 mmol of NaClO₄ in 10 ml of water. The resulting solution was concentrated to a small volume, and the crystals obtained were washed with water and dried in air. The yield was *ca.* 20–50%.

$Ni_2(pqr-cy)_3(ClO_4)_4 \cdot 5H_2O$ (pqr-cy = 234-cy and 333-cy)

In 30 ml of water were dissolved 2 mmol of NiCl₂· 6H₂O and 3 mmol of pqr-cy·3HCl and the solution was mixed with 9 mmol of NaOH in 10 ml of water. The mixture was stirred on a hot plate for *ca*. ten minutes and filtered. To the filtrate were added 10 mmol of NaClO₄ in 10 ml of water. On concentration of the filtrate, blue crystals were obtained, which were washed with water and dried in air. The yield was *ca*. 50%.

 $Ni_2(225-cy)_3(ClO_4)_4 \cdot 4H_2O$ was prepared by a similar method, utilizing 3.8 mmol of 225-cy \cdot 3HCl and 11.4 mmol of NaOH instead of 3 mmol of pqr-cy \cdot 3HCl and 9 mmol of NaOH.

Measurements

Conductivities of $5 \times 10^{-3}M$ solutions were measured at 25°C with a TOA CM-6A Conduct Meter and absorption spectra of $5 \times 10^{-3}M$ solutions were recorded at 25°C on a Hitachi 323 spectrophotometer. The methods for the other measurements were reported in a previous paper⁵.

References

- 1 W.K. Musker and M.S. Hussain, Inorg. Chem., 5, 1416 (1966); Inorg. Chem., 8, 528 (1969).
- 2 W.K. Musker and M.S. Hussain, Inorg. Nucl. Chem. Lett., 3, 271 (1967).
- 3 D.J. Roger, V.H. Schievelbein, A.R. Kalyanaraman and J.A. Bertrand, *Inorg. Chim. Acta*, *6*, 307 (1972).
- 4 D.F. Averill, J.I. Legg and D.L. Smith, *Inorg. Chem.*, 11, 2344 (1972).
- 5 M. Nonoyama, Trans. Metal Chem., in press.
- 6 W. Manch and W.C. Fernelius, J. Chem. Educ., 38, 192 (1961).
- 7 A.B.P. Lever, "Inorganic Electronic Spectroscopy", Elsevier, Amsterdam (1968), pp. 333.
- 8 M. Ciampolini and J. Gelsomini, *Inorg. Chem.*, *6*, 1821 (1967).
- 9 L. Sacconi, "Transition Metal Chemistry", vol. 4, ed. by R.L. Carlin, Marcel Dekker, New York, N.Y. (1968), pp. 199.
- 10 N.F. Curtis and Y.M. Curtis, Aust. J. Chem., 19, 1423 (1966).
- 11 J.L. Burmeister, T.P. O'Sullivan and K.A. Johnson, Inorg. Chem., 10, 1803 (1971).
- 12 B.A. Bailey, S.L. Kozak, T.W. Michelsen and W.N. Mills, *Coord. Chem. Rev.*, 6, 407 (1971).
- 13 C.W. Schläpfer, Y. Saito and K. Nakamoto, *Inorg. Chim. Acta*, 6, 284 (1972).
- 14 M. Keeton and A.B.P. Lever, *Inorg. Chem.*, 10, 47 (1971).
- 15 D. Bryson and R.H. Nuttall, Spectrochim. Acta, 26A, 2275 (1970).
- 16 W.J. Geary, Coord. Chem. Rev., 7, 81 (1971).
- 17 D.E. Fenton, R.S. Nyholm and M.R. Truter, J. Chem. Soc. A, 1577 (1971).