expected to exist in subsequent products. (b) The metals occupy fcc positions, and their rearrangement in subsequent phases at room temperature is unlikely. The observed H_2/Pu ratios at which slope changes occur are in excellent agreement with the theoretical values for the following sequence of products: Pu(O)H (0.500), Pu₇O₉H₃ (1.071), Pu₂O₃ (1.500), Pu_7O_{12} (1.714), Pu_9O_{16} (1.778), $Pu_{10}O_{18}$ (1.800) Pu₁₂O₂₂ (1.833) and PuO₂ (2.000). All these phases are expected to have metal atoms on fcc positions with the anion positions of fluorite occupied at Pu(O)H and PuO_2 . During hydrolysis of the oxide hydride phases, the metal presumably remains trivalent while ordered defects are created on anion sites until the formation of C-type Pu₂O₃ is complete. As hydrolysis continues, ordered occupancy of anion sites occurs as Pu(III) is converted to Pu(IV). The mixed-valent oxides proposed for Pu are identical to those of Pr. $Pu_7O_9H_3$ is considered to be an analog of Pu_7O_{12} . Our results suggest that six previously unknown phases exist in Pu + O + H.

Although our characterization of the product formed by thermal decomposition of Pu(O)H in dynamic vacuum at 100-200 °C is incomplete, all observations suggest that it is metastable plutonium monoxide, PuO.

This work was performed under U.S. Department of Energy Contract DE-AC04-76DP03533.

- 1 J. M. Cleveland, 'The Chemistry of Plutonium', Gordon and Breach, New York (1970).
- 2 J. T. Waber, 'Plutonium Handbook', vol. 1, 6, 149.
- 3 A. E. Hodges, III and J. M. Haschke, USDOE Rept. RFP-2919 (1979).
- 4 L. Eyring, 'Handbook on Physics and Chemistry of Rare Earths', Vol. 3, 27 (1979).

D18

Oxygen Nonstoichiometry in Calcium and Strontium Uranates (CaUO_{4-x} and SrUO_{4-x}): Lattice Parameters and Enthalpies of Formation

TAKEO FUJINO^{†*} and LESTER R. MORSS

Chemistry Division, Argonne National Laboratory, Argonne, Ill. 60439, U.S.A.

Nonstoichiometric calcium monouranate, Ca-UO_{3.50}, was prepared by reducing CaUO₄ in a hydrogen stream at 900 °C. CaUO_{3,64} and CaUO_{3,81} were prepared by heating mixtures of CaUO_{3.50} and

CaUO₄ in evacuated quartz tubes at 900 °C for 50 h. Nonstoichiometric strontium monouranates with compositions SrUO_{3.62}, SrUO_{3.70}, and SrUO_{3.87} were prepared by heating mixtures of SrUO_{3,52} and α -SrUO₄ in evacuated tubes at 300 °C for 100 h. Chemical analyses were carried out for the products. These are all rhombohedral (R3m). The lattice cparameter decreases at a much larger rate than the a-parameter with increasing oxygen amount, but there exist two-phase regions at CaUO_{3.81} and Sr-UO_{3.87}.

The effect of heating conditions for these phases was examined. The enthalpies of formation of these compositions were measured. The variation of these data as a function of nonstoichiometry is discussed.

D19

Magnetic Properties of the Rhomboedral Ferrites LuFe₂O₄ and LuMgFeO₄

O. EVRARD*, R. GERARDIN, J. ROSSAT-MIGNOD, A. WIEDENMANN and S. QUEZEL

Laboratoire de Chimie Minérale, BP 239, 54506 Vandoeuvre les Nancy Cédex, France

D20

Two New Families of Lanthanoide Ferrites Ln₂Fe₄- O_9 and $Ln_4Fe_6O_{15}$

R. GERARDIN, I. NODARI and O. EVRARD*

Laboratoire de Chimie Minérale, BP 239, 54506 Vandoeuvre les Nancy Cédex, France

D21

Synthesis, Structural Study and Electrical Properties of Hydride-Oxides: LaHO, $LaH_{1+2x}O_{1-x}$ and $LaH_{1+y}O_{1-x}$ (y = 2x)

J. F. BRICE, B. MALAMAN and O. EVRARD*

Laboratoire de Chimie Minérale, BP 239, 54506 Vandoeuvre les Nancy Cédex, France

^{*}Work performed under the auspices of the Office of Basic Energies Sciences, Division of Chemical Sciences, U.S. Department of Energy under contract #W-31-109-eng-38. [†]Visiting scientist from Japan Atomic Energy Research

Institute, Tokai-mura, Naka-gun, Ibaraki-ken 319-11, Japan.