A study of the Basicity of the Metal-metal bond in $[\mu$ -SCH₃Fe(CO)₂L]₂ Complexes. IV. Interaction with Sulfur Dioxide and Reactivity of the Coordinated Sulfur Dioxide toward Oxygen

M. S. ARABI, R. MATHIEU and R. POILBLANC

Laboratoire de Chimie de Coordination du C.N.R.S. associé à l'Université Paul Sabatier, B.P. 4142, 31030 Toulouse Cedex, France

Received February 7, 1979

Introduction

During the course of the study of the basicity of $[\mu$ -SCH₃Fe(CO)₂L]₂ complexes we have shown that the metal-metal bond is the nucleophilic center toward a proton [1] or mercuric chloride [2]. Moreover the nucleophilicity of the metal-metal bond toward H⁺ is strongly dependent on the basicity of ligand L but is less dependent for mercuric chloride. We have extended this study to the case of SO₂ to see if its behaviour toward the metal-metal bond resembles that of proton or of mercuric chloride.

Results and Discussion

Addition of SO₂ to a solution of $[\mu$ -SCH₃Fe-(CO)₂L]₂ [3] in toluene induces a slow colour change from red to violet in the case of L = P(CH₃)₃ and L = P(CH₃)₂C₆H₅. For L = P(C₆H₅)₂CH₃ and P(C₆H₅)₃ no reaction occurs. The adducts are isolated by adding pentane to the toluene solution. The analytical data and the infrared data for the ν (CO) and ν (SO) stretching frequencies are gathered in Table I.

Three infrared active bands are observed in the $\nu(CO)$ stretching region from which we can conclude that the C₂v point group of the starting molecule is preserved [4]. The increase in frequencies compared with the starting material is about 50 cm⁻¹ which is slightly superior to that found for mercuric chloride complexes [2].

Proton nmr spectra in CH₂Cl₂ confirm the structural hypothesis; one doublet is observed for the P(CH₃) resonance of the ligands ($\tau = 8.70$ ppm; J = 9 Hz, L = P(CH₃)₃, $\tau = 8.50$, J = 8 Hz, L = P-(CH₃)₂C₆H₅) and one resonance for the δ SCH₃ ($\tau = 7.30$, L = P(CH₃)₃; $\tau = 7.50$, L = P(CH₃)₂C₆H₅). From these observations we can conclude that the SO₂ is inserted into the metal-metal bond. Furthermore, the ν SO stretching frequencies are in the usual area for the ν SO stretching frequencies of a

		Analysis											
	Yields	calcd				Found						<i>v</i> C0	vSO2
	%	С	Н	P	s	0	Н	Ь	s	Colour	MP	a	ą
												2031m	1128s
(Jr-SCH ₃ Fe(CO) ₂ P(CH ₃) ₃) ₂ SO ₂	80	26.96	4.49	11.61	17.97	27.32	4.73	11.25	17.78	Dark violet	100° dec	2012s 1975s	1005s
(µ-SCH ₃ Fe(CO) ₂ P(CH ₃) ₂ C ₆ H ₅) ₂ SO ₂	75	40.12	4.25	9.42	14.58	39.87	4.23	9.36	14.33	violet	140° dec	2031m 2014s 1975s	1132s 1002sh 995s
(Jı-SCH ₃ Fe(CO) ₂ P(CH ₃)3) ₂ SO4	60	25.44	4.24	I	16.96	22.14	4.22		16.34	yellow	I	2042m 2028s 1987s	
^a Measured in CH ₂ Cl ₂ . ^b Measured in KB	lr pellets.												

TABLE I. Analytical Data and Infrared Spectra for (µ-SCH₃Fe(CO)₂L)₂SO₂ Complexes and (µ-SCH₃Fe(CO)₂P(CH₃)₃)₂SO₄.

sulfur dioxide which acts as a Lewis acid. So the geometry about sulfur atom is tetrahedral as has been found in other mononuclear [5, 6] or dinuclear [7] transition metal complexes sulfur dioxide adducts.

One of the characteristics of this type of bonding for SO_2 molecule is its ability to react with oxygen fo give sulfato complexes [8]. Indeed, when oxygen is bubbled in a toluene solution of $(\mu$ -SCH₃Fe(CO)₂- $P(CH_3)_3)_2SO_2$ a yellow solid precipitates. After 24 h the supernatant solution is eliminated and the yellow solid is washed with pentane and dried. Its low solubility prevents further purification but it has been characterised by infrared spectroscopy and its chemical analysis is in good agreement with the formula $(FeSCH_3(CO)_2P(CH_3)_3)_2SO_4$. It is a very hygroscopic compound. In the ν CO stretching region there are always three infrared active bands slightly displaced toward high frequencies compared with the SO₂ adduct, and in the ν SO stretching region three bands are denoted (1219, 1100, 1012 cm⁻¹). These three bands are attributed to the splitting of the degenerate mode ν_3 of SO₄⁻⁻for a C₂v point group [9]. Other frequencies of the SO_4^{--} group are obscured by the other vibrations of the complex. So we can propose the structure depicted in Fig. 1.

In conclusion SO₂ acts as a Lewis acid toward the metal-metal bond of the $(\mu$ -SCH₃Fe(CO)₂L)₂ complexes if L = P(CH₃)₃ or P(CH₃)₂C₆H₅. It does not react when L = P(C₆H₅)₂CH₃ or P(C₆H₅)₃,

Fig. 1. Proposed structure for $(\mu$ -SCH₃Fe(CO)₂P(CH₃)₃)₂-SO₄.

a result which is very similar to the observations done in the protonation reaction [1]. Furthermore it reacts with oxygen to give a sulfato complex which seems to be, to our knowledge, the first case of oxidation of sulfur dioxide inserted into two metals.

References

- 1 K. Fauvel, R. Mathieu and R. Poilblanc, *Inorg. Chem.*, 15, 976 (1976).
- 2 M. S. Arabi, R. Mathieu and R. Poilblanc, Inorg. Chim. Acta, 23, L17 (1977).
- 3 J. A. de Beer, R. J. Haines, R. Greatrex and N. N. Greenwood, J. Chem. Soc. A., 3271 (1971).
- 4 G. Le Borgne, D. Grandjean, R. Mathieu and R. Poilblanc, J. Organometal. Chem., 131, 429 (1977).
- 5 S. J. La Placa and J. A. Ibers, Inorg. Chem., 5, 405 (1966).
- 6 K. W. Muir and J. A. Ibers, Inorg. Chem., 8, 1921 (1969).
- 7 L. S. Benner, M. M. Olmstead, H. Hope and A. L. Balch, J. Organometal. Chem., 153, C31 (1978).
- 8 D. C. Moody and R. R. Ryan, Inorg. Chem., 15, 1823 (1976).
- 9 R. W. Horn, E. Weissberger and J. P. Collmann, *Inorg. Chem.*, 9, 2367 (1970).