Reactions of Ruthenium Polyhydride Complexes with Thiols. Preparation of Hydrido Thio-alkyl and -aryl Complexes of Ruthenium(II)

B. CHAUDRET and R. POILBLANC

Laboratoire de Chimie de Coordination du CNRS, associé à l'Université Paul Sabatier, B.P. 4142, 31030 Toulouse Cedex, France

Received February 7, 1979

Although dinuclear alkyl- or arylthiolato bridged complexes are well known in the coordination chemistry of iron or rhodium [1], very little has been reported on such ruthenium complexes. So far the only dinuclear ruthenium(II) compounds described have been $(Ru(CO)(\mu-SR)(\eta^5-C_5H_5))_2$ [2, 3] and the triple bridged one $(L_3RuX_3L_3)^{+4}$ (X = SH, SMe, L = PMe_2Ph, PMePh₂ or P(OMe)Ph₂).

On the other hand, the reactions of $RuH_2(PPh_3)_4$ with weak acids are known to produce hydrido complexes of ruthenium [5]; with H_2O a hydrido hydroxo complex is obtained which can be easily dimerized to (RuH(OH)(PPh_3)_2L)_2 [6], (L = H_2O, Me_2CO, THF or ^tBuOH).

We thus attempted the reactions of $\text{RuH}_2(\text{PPh}_3)_4$ or $\text{RuH}_4(\text{PPh}_3)_2$ with thiols or dimethyl disulfide.

 $Ru\dot{H}_2(PPh_3)_4$ or $RuH_4(PPh_3)_3$ react rapidly with equivalent PhSH or PhCH₂SH in diethyl ether. The colour of the suspension changes from yellow or white to purple. After 2 hours the suspension is filtered and the residue is recrystallised in a toluene/ petrol mixture affording purple crystals of the complexes.

Similarly $\operatorname{RuH}_2(\operatorname{PPh}_3)_4$ reacts rapidly with half the equivalent MeSSMe in dichloromethane. The colour of the solution turns rapidly to deep purple and after half an hour the solution is evaporated to a small volume and addition of diethyl ether and cooling give purple crystals of the complex (yield *ca.* 60%).

These compounds are air sensitive and their aspect is similar to the one of RuHCl(PPh₃)₃ [7]. The infrared spectra of the complexes show, apart from the characteristic bands of PPh₃, the Ru-H stretch at 1985-1995 cm⁻¹ together with very weak absorptions near 300 cm⁻¹ which could be attributed to the Ru-S stretch.

The ¹H NMR spectrum (in C₆D₆) shows together with phenyl groups between τ 2.2 and τ 3.3, the methyl or methylene groups of SCH₃ and SCH₂Ph as singlets at τ 8.1 and 6.4 respectively and the high field hydride resonances as quartets towards τ 27 (J_{PH} ~ 25 Hz) (τ 28.1, J_{PH} = 26 Hz) for RuHCl-(PPh₃)₃ [7] in (CH₂Cl₂).

		IR		NMR		Found %	2				Expected %	% 1			
Compound	^a Yield % ν Ru-H (cm ⁻¹)	ν Ru-H (cm ⁻¹)	$\tau Ru-H(J_{PH}Hz_2$ Other $\delta^{31}P^{d}$	Other	δ ³¹ pd	U	H CI P S	ß	Ч	s	с н с Р S	Н	a	Ч	s
RuH(SMe)(PPh ₃) ₃ CH ₂ Cl ₂ 70 1995 27.7 (26) 8.1 ^b RuH(SCH ₂ Ph)(PPh ₃) ₃ 60 1985 27.75(24) 6.4 ^c -5 RuH(SPh)(PPh ₃) ₃ 45 1985 36.15(24) 6.4 ^c -5 RuH(SPh)(PPh ₃) ₃ 45 1985 36.15(24) 6.4 ^c -5	70 60 45 , of SMe. ^c CF	1995 1985 1985 1985 42 of SCH ₂ Ph	27.7 (26) 27.75(24) 36.15(24) . ^d At high field of ex	8.1 ^b 6.4 ^c ternal H ₃ l	5.57	65.9 5.0 7.0 9.1 3.1 71.4 5.2 8.8 3.2	5.0 5.2	7.0	9.1 8.8	9.1 3.1 8.8 3.2	65.25 4.7 7.0 9.1 3.1 72.4 5.2 9.2 3.1	4 .7 5.2	7.0	9.1 3.1 9.2 3.1	3.1 3.1

TABLE I. Spectroscopic and Analytical Data

The ³¹P NMR spectrum of the complex RuH-(SCH₂Ph)(PPh₃)₃ consists only in one broad singlet at δ -55.57 (at high field of external H₃PO₄) indicating three equivalent phosphorus atoms at room temperature like RuHCl(PPh₃)₃ [8].

Therefore we attribute to $RuH(SR)(PPh_3)_3$ the structure shown in Fig. 1 similar to that of RuHCl-(PPh_3)_3.

Fig. 1. Structure of RuH(SR)(PPh₃)₃.

When these compounds are heated or irradiated with a high pressure mercury vapour lamp in toluene, the colour of the solutions changes from purple to brown. This apparently does not produce a thiolato bridged dinuclear complex but rather sulphide compounds since we can observe by ¹H NMR spectroscopy the disappearance of the methyl signal of $RuH(SMe)(PPh_3)_3$. Finally the reactions of RuH_2 -(PPh₃)₄ with two or more equivalents of thiol, half an equivalent or one equivalent of dithiol, lead to brown powders which probably contain a mixture of sulphide complexes.

References

- 1 R. Poilblanc, J. Organometal. Chem., 94, 241 (1975).
- 2 G. R. Knox and A. Pryde, J. Organometal. Chem., 74, 105 (1974).
- 3 S. D. Killops and S. A. R. Knox, J. Chem. Soc. Dalton, 1260 (1978).
- 4 T. V. Ashworth, M. J. Nolte and E. Singleton, Chem. Comm., 936 (1977).
- 5 D. J. Cole Hamilton and G. Wilkinson, Nouv. J. Chim., 1, 14 (1977).
- 6 B. N. Chaudret, D. J. Cole Hamilton, R. S. Nohr and G. Wilkinson, J. Chem. Soc. Dalton, 1546 (1977).
- 7 P. S. Hallmann, B. R. McGarvey and G. Wilkinson, J. Chem. Soc. A, 3143 (1968).
- 8 P. R. Hoffmann and K. G. Caulton, J. Am. Chem. Soc., 97, 4221 (1975).