Tricyclohexylphosphine Complexes of Rhodium, Iridium and Ruthenium

BRIAN R. JAMES* and MICHAEL PREECE

Department of Chemistry, University of British Columbia, Vancouver, B. C, Canada V6T 1 W5

STEPHEN D. ROBINSON

Department of Chemistry, King's College, London WC2R ZLS, U.K.

Received February 15,1979

Our interest in activation of carbon dioxide [**1]** and the report of a well-characterized $Ni(CO₂)(PCy₃)$, complex $(PCv_3 = tricvclohexv1phosphine)$ [2] led us to investigate tricyclohexylphosphine complexes of rhodium, iridium, and ruthenium. The basic and bulky phosphine is a good ancillary ligand for a coordinatively unsaturated complex likely to react with small gas molecules; this had been well-documented for rhodium [3], but at the time our studies were initiated little had been reported on iridium and ruthenium species, although carbonyls complexes such as $IrCl(CO)(PCy_3)_2$ [4], HRuCl(CO)(PCy₃)₂ [5], $RuCl_2(CO)(PCy_3)_2$ [5] and $Ru(CO)_3(PCy_3)_2$ [6] were known.

Other relevant papers on rhodium and iridium systems have appeared more recently [7-91; one of these [9], reporting partial dehydrogenation of the tricyclohexylphosphine by $Rh(I)$ and $Ir(I)$, overlapped with some of our studies which were reported almost simultaneously at a conference [10].

The paper here summarizes our findings on some rhodium, iridium and ruthenium systems.

Use of single-stage syntheses [111, involving rapid mixing of alcoholic solutions of commercially available platinum metal halides with PCy_3 , sometimes in the presence of borohydride [12], gives high yields of $HRuCl(CO)(PCy_3)_2$ [5], $Ru(CO)_3(PCy_3)_2$ [6], RhCl- $(CO)(PCy_3)_2$ [4], HRhCl₂ $(PCy_3)_2$ [7], and IrCl(CO)-*(PCy3)2 [4].* The procedures are simpler and quicker than the literature methods noted: thus, the carbonyl syntheses do not require the use of gaseous carbon monoxide, and the hydride syntheses involve no HCI solutions. For example, $RhCl(CO)(PCy_3)_2$ is readily obtained on rapidly mixing hot ethanolic solutions of $RhCl₃·3H₂O$, KOH and the phosphine; the same carbonyl is formed on mixing the cycloocta-1 ,S-diene- (COD) dimer $[RhCl(COD)]_2$ [13] with the phosphine in $CH₂Cl₂/CH₃OH$, even at 20 $^{\circ}$ C. Abstraction of CO from alcohols is much more pronounced with the more basic tricyclohexylphosphine (compared, for example, to triphenylphosphine). Addition of the phosphine to $[RhCl(COD)]_2$ in CH_2Cl_2 alone leads to $RhCl(COD)(PCy₃)$ as reported recently by another group [14]. The iridium analogue, IrCl(COD)(PCy₃), may be formed by addition of the phosphine to the easily made and handled $[HIrCl₂(COD)]$ ₂ complex [15]; the phosphine is sufficiently basic to remove HCl and this circumvents the necessity of isolating the somewhat more elusive $[IrC(COD)]_2$ complex $[8]$.

Treatment of the cyclooctene (COT) complex IrCl(COT)₂]₂ [16] with PCy₃ in toluene at 20 °C nder argon yields H₂IrCl[P(C₆H₉)Cy₂](PCy₃), *1*, in which one cyclohexyl group has been dehydrogenated to a cyclohexene group, the double bond of which is coordinated to the iridium. This interesting reaction was discovered independently and recently reported on by Vrieze et *al.* [9]. However, they had used refluxing conditions and this led to the 4-coordinate iridium(I) species $IrCI[P(C_6H_9)Cy_2](PCy_3)$. The *cis*dihydride was then isolated as a mixture of isomers only after further reaction with H_2 ; our spectroscopic data $[\nu(M-CI), \nu(Ir-H), \delta^{31}P, J(P-P)]$ are in excellent agreement with theirs, and we have also found τ values (C₆D₆) at 19.8, 31.4 for the dominant isomer (\sim 80% of the total via our method) which is one of two possible species containing a 5.5-membered ring [9]. The coordinated olefinic bond in complex I is not hydrogenated using 1 atm H_2 , although such stoichiometric hydrogenation is welldocumented for unstaruated phosphines such as ovinylphenyldiphenylphosphine when coordinated at rhodium [17]. The 'saturated' dihydride H_2 IrCl- $(PCy_3)_2$ is readily synthesized by treating [IrCl- $(COT)₂$]₂/PCy₃ solutions with 1 atm H₂, as reported by Vrieze *et al. [9].* We have monitored dihydride formation at 20 'C by following an irreversible absorption of 1.0 mol H_2/Ir , and thus the noted [9] hydrogenation of the cyclooctene likely takes place subsequently. Use of D_2 gives a dideuteride $[\nu(Ir-D)]$ 1605 cm⁻¹] but also some dihydride and a deuteride hydride, suggesting that there is some concomitant hydrogen exchange with the phosphine ligand. Treatment of the dihydride with deuterium leads to a dideuteride (and *vice versa)* and, since dihydride formation is essentially irreversible under the same conditions, these data again indicate some exchange process with the phosphine; nevertheless, the ³¹P NMR of $H₂$ IrCl(PCy₃)₂ remains as a singlet [9] even at -85 °C showing complete equivalence of the phosphine ligands. The analogous rhodium complex $H_2RhCl(PCy_3)_2$ [9] undergoes similar exchange with D_2 .

Reaction of $H_2IrCl(PCy_3)_2$ with 1 atm CO gives a new species $H_2IrCl(CO)(PCy_3)_2$ (Table I), which shows no exchange with D_2 presumably because

^{*}Author to whom correspondence should he addressed.

Complex	ν (CO)	$\nu(M-H)$	$\nu(M-CI)$	$\tau(M-H)$	$\delta^{31}P$
$H_2IrCl(CO)(PCy_3)_2$	1970	2200	255	$18.4(d \text{ of } t)^{\circ}$	$-24.2(s)$
		2102		30.1(d of t) ^o	
$HIrCl2(PCy3)2$	-	c	317	$42.3(t)^d$	$-20.9(s)$
$HIrCl2(PCy3)2(DMA)$	1628	2300	300		\sim
3, $HIrCl2(CO)(PCy3)2$	1980	2105	310	$18.2(t)^e$	$-2.3(s)$
$HRhCl2(PCy3)2$		1943	345	$40.5(d \text{ of } t)$	\sim

TABLE I. Some Spectroscopic Data^a for Rhodium and Iridium Cyclohexylphosphine Complexes.

 $\frac{1}{2}$ in cm⁻¹ (Nujol). NMR in CDCl₃ or C₆D₆; ¹H relative to TMS; ³¹P relative to 85% H₃PO₄, downfield shifts being negative;
s = singlet, d = doublet, t = triplet.
 $\frac{bJ(H_A-H_B) = 5 H_z J(P-H_A) = 13 H_z J(P-H_B) = 18 H$ $dj(P-H) = 11 Hz$. $eJ(P-H) = 11 Hz$. $f_{J(P-H)} = 12$ Hz, $J(Rh-H) = 30$ Hz.

this complex, unlike $H_2IrCl(PCy_3)_2$, is coordinatively saturated and cannot accommodate the necessary C-H cleavage (oxidative addition) [5, 18].

The monohydride $HIrCl₂(PCy₃)₂$ (Table I) is precipitated as a rose-coloured solid on adding IrCl₄ (Platinum Chemicals) in 2-methoxyethanol to a stirred, boiling solution of the phosphine in the same solvent; this hydride was probably synthesized previously but incorrectly formulated as $IrCl₂(PCy₃)₂$ [4]. The hydride is also formed via addition of HCl to solutions of $[IrCl(COT)]_2$ and PCy₃ in toluene, or toluene/NN-dimethylacetamide (DMA); with the latter solvent system, the hydride (Table I) precipitates as a yellow microcrystalline compound containing weakly coordinated amide that readily dissociates on dissolution in toluene. The $\nu(Ir-H)$ stretch, although not detectable in the 5-coordinate complex (and this is common for such species [19]) is readily detected in the DMA complex at 2300 cm⁻¹, an extremely high wavenumber for a metal-hydride stretch [20], presumably reflecting the weak binding of the trans amide ligand. Structure 2 for the 5coordinate complex is consistent with the spectroscopic data, and reaction with 1 atm CO gives the carbonyl $HIrCl₂(CO)(PCy₃)₂$, 3 (Table I); the equivalence of the phosphines is shown by the ³¹P and the high-field ¹H NMR, and the low τ value is consistent with hydride being trans to CO rather than Cl. Complex 3, even in the solid state, isomerizes to 4, and also eliminates HCl to yield *trans-IrCl(CO)(PCy₃)₂*. Complex 4 has been characterized previously $[\nu(CO)]$ = 2015, $\nu(\text{IrH})$ = 2276 cm⁻¹], having been made by reaction of IrCl(CO)(PCy₃)₂ with HCl [4].

The $[RhCl(COT)_2]_2/PCy_3$ systems were also studied by Vrieze et al. [9] and they noted formation of $\widehat{RhCl[P(C_6H_9)Cy_2](PCy_3)}$ and $H_2RhCl(PCy_3)_2$, analogous to the iridium species. However, we find

that treatment of $[RhCl(COT)_2]_2$ with PCy₃ in toluene at 20 °C also yields $HRhCl_2(PCy_3)_2$ (Table I), which is more readily synthesized by treatment of $RhCl₃·3H₂O$ with PCy₃ in acetone; this hydride has been made previously by reaction of HCl with RhCl(PCy₃)₂, but the high-field ¹H NMR had not been detected [7].

Table I lists spectroscopic data for the new complexes, and further data for the $HRhCl₂(PCy₃)₂$ complex.

Toluene solutions of the $[MCl(COT)_2]_2$ complexes ($M = Rh$, Ir) in the presence of PCy₃ at 25 °C were found to sometimes [21] absorb 1.0 mol $CO₂$ per metal atom, but we have not been able to isolate any $CO₂$ complexes. In view of the reactions noted above in the absence of $CO₂$ (for example, hydride formation), the $CO₂$ reactions are likely to be complex. Solution IR shows the presence of carbonyls (possibly $M(PCy_3) + CO_2 \rightarrow M(CO) + OPCy_3$, [22]) although a band at 1755 cm^{-1} in the iridium system could be due to $\nu(C=0)$ of coordinated $CO₂$ [23]. Carbon dioxide complexes of rhodium(I) have been synthesized by a similar procedure but using PBu_3^n as the bulky phosphine [22]; few details were reported, but we found no evidence [24] for any reaction of [RhCl-(olefin)₂ $\frac{1}{2}$ /PBu₃ solutions with 1 atm CO₂ at 20 °C (olefin = COT, C_2H_4).

Acknowledgments

We wish to thank NATO for a grant initiating this work, and the National Scientific and Engineering Research Council of Canada for subsequent financial support. Johnson, Matthey Ltd. generously donated ruthenium, rhodium and iridium halides.

References

- 1 Project initiated through NATO grant 1128, awarded to B.R.J. and S.D.R. in March 1976.
- M. Aresta, C. F. Nobile, V. G. Albano, E. Forni, and M. Manassero, Chem. Comm., 636 (1975), M. Aresta and C. F. Nobile, J. Chem. Soc. Dalton, 708 (1977).
- H. L. M. van Gaal, F. G. Moers and J. J. Steggerda, J. *Organometal, Chem., 65, C43* (1974).
- F. G. Moers, J. A. M. de Jong and P. M. H. Beaumont, J. Inorg. Nucl. Chem., 35, 1915 (1973).
- F. G. Moers and J. P. Langhout, *Rec. Trav. Chim., 91,* 591 (1972); F. G. Moers, R. W. M. ten Hoedt, and J. P. Langhout, *J. Organometal. Chem., 65, 93* (1974).
- W. Hieber, V. Frey and P. John, *Chem. Ber.*, 100, 1961 (1967).
- *I* H. L. M. van Gaal, J. M. J. Verlaak and T. Posno,Inorg. *Chim. Acta, 23, 43* (1977).
- *8* R. H. Crabtree and G. E. Morris, *J. Organometal. Chem.,* 135, 395 (1977).
- *9* S. Hietkamp. D. J. Stufkens and K. Vrieze. J. *Oraano-metal. Chem.1 152, 347* (1978). , _
- 10 B. R. James, M. Preece and S. D. Robinson, *6Ist Canadian Chemical Conference, Winnipeg* (1978) Abstract IN 31.
- 11 N. Ahmad, J. J. Levison, S. D. Robinson and M. F. UttIey, *J. Chem. Sot. Dalton, 370* (1975); *Inorg. Syn., IS,45* (1974).
- 2 B. R. James, M. Preece and S. D. Robinson, details available on request; to be published.
- 3 J. Chatt and L. M. Venanzi, J. Chem. Soc., 4735 (1957).
- 14 D. J. A. de WaaI and W. Robb, *Inorg. Chim. Acta, 26,* 91 (1978).

 $\overline{}$

- 15 S. D. Robinson and B. L. Shaw, *Tetrahedron Letters,* 1301 (1964); *J. Chem. Sot., 4998* (1965).
- 16 J. L. Herd6 and C. V. Senoff. *Inora. Nucl. Chem. Letters.* I 7, 1029 (1971).
- 17 P. W. Clark and G. E. Hartwell, J. *Organometal. Chem., 139, 385* (1977).
- 18 G. W. Parshah, *Accounts Chem. Res., 8, 113* (1975); D. E. Webster, *Adv. Organometal. Chem., 15, 147* (1977); A. E. ShiIov and A. A. Shteinman, *Coordin.* Chem. *Rev.,* 24, 97 (1977).
- 19 H. D. Empsall, E. M. Hyde, E. Mentzer and B. L. Shaw, J. *Chem. Sot. Dalton, 2285* (1977).
- *20* J. P. Jesson, in 'Transition Metals Hydrides', ed. E. L. Muetterties. Marcel Dekker, New York (1971) P. 75.
- 21 We have not been able to elucidate the reasons for the irreproducibility of these reactions; water content is not a problem.
- 22 T. Ito, T. Kokubo, T. Yamamoto, A. Yamamoto and S. Ikeda, *Chem. Comm.*, 136 (1974).
- 23 M. Aresta and C. F. Nobile, *Inorg. Chim. Acta, 24, I49* (1977).
- 24 For example, with $[RhCl(C₂H₄)₂]$ and $2/4PBu_3^n$ under CO_2 , 2.0 C_2H_4 are evolved per Rh, and there is no CO_2 absorption; $RhCl(PBu_{3}^{n})_{2}$ remains in solution. Under N_2 , C_2H_4 is evolved and formation of RhCl(PBu $_3^2$)₂(N₂) is indicated.