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Our interest in activation of carbon dioxide [ 1 ] and 
the report of a well-characterized Ni(CO,)(PCy,), 
complex (PCy3 = tricyclohexylphosphine) [2] led us 
to investigate tricyclohexylphosphine complexes of 
rhodium, iridium, and ruthenium. The basic and 
bulky phosphine is a good ancillary ligand for a co- 
ordinatively unsaturated complex likely to react with 
small gas molecules; this had been well-documented 
for rhodium [3], but at the time our studies were 
initiated little had been reported on iridium and 
ruthenium species, although carbonyls complexes 
such as IrCl(CO)(PCy,), [4], HRuCl(CO)(PCy3)3 

151, R~CMCOXPCYA 151 and Ru(CO)3(PCy3)3 
[6] were known. 

Other relevant papers on rhodium and iridium 
systems have appeared more recently [7-91; one of 
these [9], reporting partial dehydrogenation of the 
tricyclohexylphosphine by Rh(1) and h(I), over- 
lapped with some of our studies which were reported 
almost simultaneously at a conference [lo]. 

The paper here summarizes our findings on some 
rhodium, iridium and ruthenium systems. 

Use of single-stage syntheses [ 111, involving rapid 
mixing of alcoholic solutions of commercially available 
platinum metal halides with PCy3, sometimes in the 
presence of borohydride [ 121, gives high yields of 

HRuCl(COXPCy3)2 151, RWW’CLd~ [61, MCl- 
(co)@cY& [41, HRhC12(PQ3)2 [71, ad IrCl(CO)- 

(PCy3)2 [4]. The procedures are simpler and quicker 
than the literature methods noted: thus, the carbonyl 
syntheses do not require the use of gaseous carbon 
monoxide, and the hydride syntheses involve no HCI 
solutions. For example, RhCl(CO)(PCy3)3 is readily 
obtained on rapidly mixing hot ethanolic solutions of 
RhCl3*3H30, KOH and the phosphine; the same 
carbonyl is formed on mixing the cycloocta-1 ,S-diene- 
(COD) dimer [RhCl(COD)], [ 131 with the phosphine 
in CH2C13/CH30H, even at 20 “C. Abstraction of CO 
from alcohols is much more pronounced with the 
more basic tricyclohexylphosphine (compared, for 
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example, to triphenylphosphine). Addition of the 
phosphine to [RhCl(COD)]3 in CH2C12 alone leads to 
RhCl(COD)(PCy3) as reported recently by another 
group [ 141. The iridium analogue, IrCl(COD)(PCy,), 
may be formed by addition of the phosphine to the 
easily made and handled [HIrC12(COD)]2 complex 
[15]; the phosphine is sufficiently basic to remove 
HCl and this circumvents the necessity of isolating 
the somewhat more elusive [IrCl(COD)]2 complex 

PI. 
Treatment of the cyclooctene (COT) complex 

[IrCl(COT)2]2 [16] with PC 
+! 

in toluene at 20 “C 
under argon yields H,IrCl[P( eH9)Cy3](PCy3), 1, in 
which one cyclohexyl group has been dehydrogenated 
to a cyclohexene group, the double bond of which is 
coordinated to the iridium. This interesting reaction 
was discovered independently and recently reported 
on by Vrieze et al. [9]. However, they had used re- 
fluxing conditions and this led to the 4-coordinate 
iridium(I) species Irm,H3)Cy2](PCy3). The cis- 
dihydride was then isolated as a mixture of isomers 
only after further reaction with H,; our spectro- 
scopic data [@-Cl), v(Ir-H), a3*P, J&P)] are in 
excellent agreement with theirs, and we have also 
found r values (&De) at 19.8, 31.4 for the dominant 
isomer (- 80% of the total via our method) which 
is one of two possible species containing a 5.5-mem- 
bered ring [9]. The coordinated olefinic bond in 
complex I is not hydrogenated using 1 atm Hz, 
although such stoichiometric hydrogenation is well- 
documented for unstaruated phosphines such as o- 
vinylphenyldiphenylphosphine when coordinated at 
rhodium [17]. The ‘saturated’ dihydride H,IrCl- 
(PCy3)2 is readily synthesized by treating [IrCl- 
(COT)3]3/PCy3 solutions with 1 atm Hz, as reported 
by Vrieze et al. [9]. We have monitored dihydride 
formation at 20 ‘C by following an irreversible 
absorption of 1.0 mol Hz/h, and thus the noted [9] 
hydrogenation of the cyclooctene likely takes place 
subsequently. Use of D2 gives a dideuteride [v(Ir-D) 
1605 cm-‘] but also some dihydride and a deuteride 
hydride, suggesting that there is some concomitant 
hydrogen exchange with the phosphine ligand. Treat- 
ment of the dihydride with deuterium leads to a 
dideuteride (and vice versa) and, since dihydride 
formation is essentially irreversible under the same 
conditions, these data again indicate some exchange 
process with the phosphine; nevertheless, the 31P 
NMR of H3IrCl(PCy3)3 remains as a singlet [9] even 
at -85 “C showing complete equivalence of the 
phosphine ligands. The analogous rhodium complex 
H3RhCl(PCy3)3 [9] undergoes similar exchange with 

D2. 
Reaction of H21rC1(PCy3), with 1 atm CO gives a 

new species H3IrCl(CO)(PCy3)3 (Table I), which 
shows no exchange with D2 presumably because 
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