
Methylaminobis(difluorophosphine) as a Monoligate Monometallic Ligand

R. B. KING, M. G. NEWTON, J. GIMENO* and M. CHANG Department of Chemistry, University of Georgia, Athens, Georgia 30602, U.S.A. Received May 3, 1977

The ability of $CH_3N(PF_2)_2$ [1] to function as a biligate monometallic ligand is indicated by the formation of $CH_3N(PF_2)_2M(CO)_4$ (M = Cr, Mo, and W) [2], $[CH_3N(PF_2)_2]_3M$ (M = Cr, Mo, and W) [3], $C_5H_5V(CO)_2(PF_2)_2NCH_3$ [4], and $C_5H_5V_2$ - $[(PF_2)_2NCH_3]_2$ [4]. The ability of $CH_3N(PF_2)_2$ to function as a biligate bimetallic ligand is indicated by the formation of $[CH_3N(PF_2)_2]_3Co_2L_2$ (L = CO and CH_3NHPF_2 [5], $[CH_3N(PF_2)_2Fe(CO)_3]_2$ [6], and $[CH_3N(PF_2)_2]_nFe_2(CO)_{9-2n}$ (n = 1 and 2) [6]. This Communication reports the first examples of complexes in which $CH_3N(PF_2)_2$ functions as a monoligate monometallic ligand as well as the X-ray crystal structure determination of a novel metal complex containing both biligate monometallic and monoligate monometallic $CH_3N(PF_2)_2$ ligands.

Treatment of $C_5H_5Fe(CO)_2CI$ [7] with CH_3N -(PF₂)₂ [1] results in the successive replacement of the two carbonyl groups with monoligate monometallic $CH_3N(PF_2)_2$ ligands to form $C_5H_5Fe(CO)$ -[(PF₂)₂NCH₃]Cl (I) and $C_5H_5Fe[(PF_2)_2NCH_3]_2CI$ (II), respectively.[†] Thus the red-purple complex I, m.p. 85-87 °C, $\nu(CO)$ 2000 cm⁻¹, can be obtained in 45 to 55% yields by reaction of $C_5H_5Fe(CO)_2CI$ with $CH_3N(PF_2)_2$ in a 1:1 mol ratio in boiling hexane for 5 minutes or in boiling diethyl ether for 1 hr. The red complex II, m.p. 62-64 °C, can be obtained in ~ 45% yield by reaction of $C_5H_5Fe(CO)_2CI$ with excess $CH_3N(PF_2)_2$ in boiling hexane for several hours.

*Permanent address: Departamento de Quimica Inorganica, Universidad de Zaragoza, Zaragoza, Spain.

[†]New compounds were characterized by correct elemental analyses (C, H, N, P, F) and molecular weight determinations (vapor pressure osmometer in benzene). All new compounds were non-electrolytes in acetonitrile solution. The reported infrared ν (CO) frequencies were determined in pentane or hexane solution. The thermal reactions of $C_5H_5M(CO)_3Cl$ (M = Mo and W) [8], with $CH_3N(PF_2)_2$ in boiling tetrahydrofuran or benzene initially proceed analogously to the formation of I to give the orange complexes[†] C_5H_5 - $M(CO)_2[(PF_2)_2NCH_3]Cl$ (III: M = Mo, m.p. 90-94 °C, $\nu(CO)$ 2026 and 1937 cm⁻¹; M = W, m.p. 109-111 °C (dec.), $\nu(CO)$ 2009 and 1927 cm⁻¹) in 50 to 80% yields. However, ultraviolet irradiation of $C_5H_5M(CO)_3Cl$ (M = Mo and W) with excess CH_3N - $(PF_2)_2$ in diethyl ether solution gives yellow carbonylfree complexes of the stoichiometry[†] $C_5H_5M[(PF_2)_2 NCH_3]_2Cl$ (M = Mo, m.p. 122-123 °C; M = W, m.p. 123-125 °C (dec.)) in 50% yields.

The molybdenum complex $C_5H_5Mo[(PF_2)_2-NCH_3]_2Cl$ forms monoclinic crystals from a mixture of dichloromethane and cyclohexane: space group C2/c; a = 29.481 Å, b = 7.991 Å, c = 15.833 Å, $\beta = 111.43^{\circ}$, Z = 8. Least squares refinement using the 2160 observed reflections (R = 0.0291, R_w = 0.0310) indicates the structure depicted in Figure 1

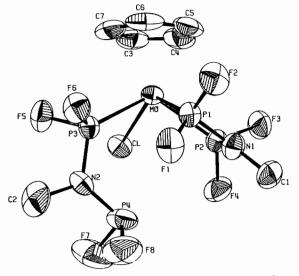


Fig. 1. The molecular structure of $C_5H_5Mo[(PF_2)_2NCH_3]_2Cl$.

containing one biligate monometallic and one monoligate monometallic $CH_3N(PF_2)_2$ ligand. The Mo-Cl distance is 2.510(1) Å as compared with a Mo-Cl distance of 2.542(9) Å found [9] for $C_5H_5Mo(CO)_3$ -Cl. The P(1)-Mo-P(2) angle involving the biligate monometallic $CH_3N(PF_2)_2$ ligand is 63.09(5)° indicative of the compression associated with the small bite of this bidentate ligand. The remaining lateral (*cis*) ligand bond angles are 83.14(5)°, 76.11(5)°, and 84.01(5)° for the angles P(1)-Mo-P(3), P(3)-Mo-Cl, and Cl-Mo-P(2), respectively. The two diagonal (*trans*) bond angles are 127.38(5)° and 116.42(5)° for the P(1)-Mo-Cl and P(2)-Mo-P(3) angles, respectively. These angles suggest that the compression in the P(1)-Mo-P(2) angle caused by the small bite of the CH₃N(PF₂)₂ ligand is also reflected in the corresponding diagonally situated P(3)-Mo-Cl angle, although to a lesser extent The P(1)-N(1)-P(2) and P(3)-N(2)-P(4) angles are 93 5(2)° and 120 3(3)°, respectively, reflecting the expected geometric differences between biligate monometallic and monoligate monometallic CH₃N(PF₂)₂ ligands

Two particularly noteworthy features of the chemistry summarized in this Communication are the tendency of the $CH_3N(PF_2)_2$ ligand to function as a monoligate rather than exclusively as a biligate monometallic ligand in these systems and the extreme reluctance of the CH₃N(PF₂)₂ ligand to displace covalently bonded chlorine to form ionic derivatives containing complex cations such as $[C_5H_5M[(PF_2)_2]$. $NCH_3]_2$ (M = Mo and W) which would have two biligate monometallic CH₃N(PF₂)₂ ligands and would be isostructural with the known [4] $C_5H_5V[(PF_2)_2$ - $NCH_3]_2$ In the latter connection all of our attempts to abstract chlorine from $C_5H_5M[(PF_2)_2NCH_3]_2Cl$ with silver hexafluorophosphate to give derivatives of $[C_5H_5M[(PF_2)_2NCH_3]_2]^+$ have given negative results These two features of this $CH_3N(PF_2)_2$ chemistry may be further consequences of the small bite and low basicity of this ligand

Acknowledgment

We are indebted to the Air Force Office of Scientific Research for partial support of this work under Grant AFOSR-75-2869 JG is indebted to the Program of Cultural Cooperation between the USA and Spain administered by the Fulbright Commission of Spain for a fellowship MC is indebted to the Graduate School of the University of Georgia for a fellowship

References

- 1 J F Nixon, J Chem Soc A, 2689 (1968)
- 2 T R Johnson and J F Nixon, J Chem Soc A, 2518 (1969)
- 3 R B King and J Gimeno, Chem Comm, in press (1977)
- 4 R B King and K-N Chen, submitted for publication
- 5 M G Newton, R B King, M Chang, N S Pantaleo and J Gimeno, submitted for publication
- 6 M G Newton, R B King, M Chang and J Gimeno, J Am Chem Soc, in press (1977)
- 7 T S Piper, F A Cotton and G Wilkinson, J Inorg Nucl Chem, 1, 165 (1955)
- 8 T S Piper and G Wilkinson, J Inorg Nucl Chem, 3, 104 (1956)
- 9 S Chaiwasie and R H Γenn, Acta Cryst, B, 24, 525 (1968)