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In previous publications [1, 2] it was reported
that CH;Cl(D,H;)HOH [1, 3] and, in fact, all simple
alkyl(aquo)cobaloximes [2, 3] undergo uv and visible
spectra changes in aqueous base indicative of carbon—
cobalt bond cleavage to yield a cobalt(IIl) complex.
I would now like to report that the organic product
of this reaction for CH3;Co(D,H,)HOH is methane.
Methane was detected in the atmosphere above
samples containing ca. 1.67 X 107> M CH;Co(D,H,)
HOH in 1.0N aqueous KOH at 50 °C both by glpc
[4] and mass spectral analysis [S5]. When the reaction
was run in D,O (1.0N in NaOD) the product was
monodeuteromethane of high isotopic purity (Table).
When CD;Co(D,H,)HOH [6] was decomposed in
1.0N aqueous KOH the product was trideutero-
methane while in D,0 (1.0 N in NaOD) tetradeutero-
methane was obtained (Table).

This base catalyzed heterolysis was quantitated
manometrically using Warburg manometers [8, 9].
In all cases (Table) the yield of methane was less
than stoichiometric, the average yield for the decom-
position of CH;Co(D,H;)HOH in aqueous KOH
being 68.8 + 2.6% (average of nine determinations).
The yield was independent of cobaloxime concentra-
tion over the range ca. 5.0 X 10 to 5.0 X 107> M.
Lowering the temperature to 25.0 °C also had little
or no effect on the yield of methane. However, in
all cases, subsequent photolysis of the reaction
mixtures [10] after completion of the base catalyzed
reaction produced an additional quantity of methane
[11] such that the combined base-catalyzed and
photolytic yields were essentially stoichiometric
(Table). These observations indicate that the base-
catalyzed reaction does not convert significant
amounts of the organic ligand to any product other
than methane.

Significant amounts of methane were detected (by
glpc [4]) above samples incubated under air effecti-
vely ruling out a homolytic carbon—cobalt cleavage
mechanism leading to methyl radicals, although other
radical processes cannot be ruled out by these
observations. Cartafio and Ingraham [12] have shown
that the equatorial methyl groups of CH3Co(D,H,)-
HOH are acidic and undergo exchange with solvent
protons in alkaline DMSO—d¢—D,0 mixtures at 35 °C
at a rate that is twice as fast as methane formation at
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50 °C. These results suggest the following heterolytic
mechanism for methane formation although other
heterolytic mechanisms are, of course, possible.
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To obtain evidence regarding the involvement
of equatorial methyl proton dissociation in methane
formation an attempt was made to decompose
methyl bis(diphenylglyoximato)aquocobalt(III) [13].
After 284 hr at 50 °C in 1. 0N KOH,20.0+ 2.0 ul of
gas were evolved or 94 * 1.0% (based on cobalt,
average of two samples). However, the boron difluo-
ride bridged derivative, CH3Co(D,B,F;)HOH, reacted
to produce a 78.1 + 1.8% yield of methane with an
apparent first order rate constant of 3.03 £ .08 X
107% s under the same conditions. While these
observations are consistent with the mechanism
shown above, other explanations are also possible.

To my knowledge this is the first example of an
apparent heterolytic carbon—cobalt solvolysis to a
cobalt(II) complex and a carbanion-like organic
fragment for a simple organo-cobalt complex. In all
previous examples of this mode of carbon—cobalt
cleavage the organic ligand is activated either by the
presence of a leaving group on the f-carbon (in which
case olefins are formed) [16] or a keto group on the
B-carbon (so that enols may be formed) [17].

The nature of the yield-limiting side reaction is
not yet clear, although the results in the Table show
that it is not second order in cobaloxime and
apparently does not lead to carbon—cobalt bond
cleavage. Presumably some base-induced alteration of
the equatorial ligand system renders a significant
fraction of the organocobalt complex inert to the
base-catalyzed heterolysis, either by preventing equa-
torial ionization or deactivating the carbon—cobalt
bond for heterolytic cleavage.

The effects of various axial ligands on the base-
catalyzed heterolysis described herein as well as the
nature of the yield-limiting side reaction are currently
under investigation and will be the subject of a forth-
coming report.
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