An Interesting Feature in Vibrational Spectra of Dicarba-closo-dodecaboran(12)yl Derivatives of Non-transition Metals

L. A. LEITES, L. E. VINOGRADOVA, V. I. BREGADZE, V. Ts. KAMPEL and A. Ya. USIATINSKY

Institute of Organo-Element Compounds, Academy of Sciences of the USSR, Vavilov St. 28, Moscow B-312, USSR Received October 17, 1978

It is well known that the frequencies of non-transition metal-carbon bond stretching vibrations (ν_{M-C}) including those of Hg–C and Tl–C bonds lie in the region 400–600 cm⁻¹ [1, 2]. However, Raman spectra of bis(dicarba-closo-dodecaboran(12)yl-1)mercury and bis(dicarba-closo-dodecaboran(12)yl-1)- thallium chloride* exhibit no lines in this region but strong polarized lines between 130 and 180 cm⁻¹ are observed instead, which were not present in the spectra of original carboranes. These low values of ν_{M-C} could have been explained by a low value of K_{M-C} force constant, if it had not been known that the M-C bond in C-carboranyl derivatives of Hg and Tl is stronger than that for corresponding alkyl derivatives [4, 5]. So it is to be concluded that during the vibration with the frequency ~150 cm⁻¹ not simply metal-carbon bond stretching occurs, but the carborane nucleus behaves as a rigid body pseudoatom, the vibration having metal-carborane stretching character. Indeed, if one calculates the vibrations of a linear three-mass model "carborane-

TABLE. The Frequencies of the Metal-Carborane Stretching Vibrations in Raman Spectra^a of Carboranyl Derivatives of Nontransition Metals.

Compound ^b	Position of Substituent in Carborane Nucleus	$\nu_{\rm M-Carb}$ in cm ⁻¹
$(1,2-B_{10}H_{10}C_2H)_2Hg$	C(1)	141s, 161s (in solid)
$(1,7-B_{10}H_{10}C_2H)_2Hg$	C(1)	154s (in solid)
$(1, 12 - B_{10}H_{10}C_2H)_2Hg$	C(1)	155s, 175w (in solid)
(1,2-C ₂ H ₂ B ₁₀ H ₉) ₂ Hg	B(9)	136s, 143sh (in solid) 140s (in acetone solution)
$(1,7-C_2H_2B_{10}H_9)_2H_8$	B(9)	129s, 148s, 165w (in solid) 138s (in benzene and acetone sol.)
(1,12-C ₂ H ₂ B ₁₀ H ₉) ₂ Hg	B(2)	132s, 148s, 168w (in solid) 138s (in acetone solution)
(1,2-C ₂ H ₂ B ₁₀ H ₉)HgCl	B(9)	158w, 173s (in solid)
(1,7-C ₂ H ₂ B ₁₀ H ₉)HgCl	B(9)	150w, 173s (in solid)
(1,12-C ₂ H ₂ B ₁₀ H ₉)HgCl	B(2)	176s (in solid)
(1,2-С ₂ Н ₂ В ₁₀ Н9)НgВт	B(9)	149s, 157s, 162s (in solid)
(1,7-C ₂ H ₂ B ₁₀ H ₉)HgBr	B(9)	144w, 158s (in solid)
(1,2-B ₁₀ H ₁₀ C ₂ H)HgMe	C(1)	176s, 555s (in solid)
(1,2-C ₂ H ₂ B ₁₀ H ₉)HgEt	B(9)	165s, 486s (in solid)
$(1,7-C_2H_2B_{10}H_9)$ HgEt	B(9)	166s, 486s (in solid)
(1,2-B ₁₀ H ₁₀ C ₂ H)TICl	C(1)	144s, 186w (in solid)
$(1,2-C_2H_2B_{10}H_9)_2$ TICI	B(9)	142s (in solid)
(1,7-C2H2B10H9)AsCl2	B(9)	239m (in benzene solution)
$(1,7-C_2H_2B_{10}H_9)SbCl_2$	B(9)	195m (in solid)

^a Raman spectra were obtained using a Jobin-Ivon HG 2S spectrometer equipped with Ar⁺ laser CR-8. ^b The preparation and physical constants of the compounds studied are given in the following papers: for carboranes containing C-Hg bonds [4], B-Hg bonds [6], C-Tl bonds [5], B-As and B-Sb bonds [7].

^{*}For brevity in the following text we shall use, as is often done [3], the trivial name "carborane" instead of "dicarbacloso-dodecaborane(12)".

metal-carborane", taking into account the whole mass of the carborane nucleus and assuming the force constant K_{M-C} equal to that in alkyl derivatives [1], then frequencies are obtained which are close to the observed ones. For B-mercurated carboranes the frequency of the metal-carborane stretching vibration changes only by 10–15 cm⁻¹ in comparison with C-mercurated isomers.

Sometimes the ν_{M-Carb} Raman line is split into two or three components due to crystal lattice effects, because only one line is observed in solution spectra. If one of the substituents attached to a metal atom (Hg or Tl) is a carborane nucleus and the second an alkyl group (see Table), two strong polarized lines are observed in Raman spectra: one in the low frequency region corresponding to the metal-carborane stretching and the other one in the usual region (~500 cm⁻¹) corresponding to ν_{M-C} of metal-alkyl bonds.

In the spectra of carboranyl derivatives of As and Sb of the type $C_2H_2B_{10}H_9MCl'_2$ the v_{M-Cl} stretchings

are more intense in Raman than ν_{M-Carb} , the latter being easily identified as a polarized line of medium intensity whose frequency lies in the region of 180– 250 cm⁻¹, its value depending on the mass of the element M.

References

- 1 J. Mink, Yu. A. Pentin, "Modern Problems of Physical Chemistry" (in Russian), v.7, Moscow State University, Moscow (1976) p. 224.
- 2 A. P. Kurbakova, Dissertation, Moscow, 1978.
- 3 Council of the American Chemical Society, Inorg. Chem., 7, 1945 (1968).
- I. Zakharkin, V. I. Bregadze, O. Yu. Okhlobystin, J. Organometal. Chem., 6, 228 (1966).
 V. I. Bregadze, A. Ya. Usiatinsky, N. N. Godovikov,
- 5 V. I. Bregadze, A. Ya. Usiatinsky, N. N. Godovikov, Doklady Akad. Nauk SSSR, 241, 364 (1978).
- 6 V. I. Bregadze, V. Ts. Kampel, N. N. Godovikov, J. Organometal. Chem., 136, 281 (1977).
- 7 V. I. Bregadze, V. Ts. Kampel, N. N. Godovikov, J. Organometal. Chem., in press (1978).