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The P-subunits of E. coli sulfite reductase (SiR) 
contain an Fe-isobacteriochlorin, termed siroheme, 
and a [4Fe-4S] cluster. Mijssbauer and EPR studies 
[l] of oxidized SIR have demonstrated that the 
siroheme and the iron-sulfur cluster are exchange- 
coupled. Such a coupling implies a covalent link 
between the two chromophores; it is reasonable to 
assume that the cluster is attached to the heme 
iron by an as yet unspecified bridging ligand. In 
oxidized SIR the iron-sulfur cluster is in the 2+ 
oxidation state, a state in which [4Fe_IS] clusters 
are normally diamagnetic. Through exchange inter- 
actions with the siroheme the cluster acquires para- 
magnetism; the experimental observations have 
been explained qualitatively in a model which 
involves isotropic exchange between the heme iron 
and one iron site of the cluster [2]. Recent studies 
[3] of one-electron and two-electron reduced SiR, 
a nitrite ‘turnover’ (ferroheme-NO) complex, and 
studies of SIR in chaotropic agents show that the 
coupling is maintained in many oxidation-, spin-, 
and complexation-states of the enzyme. We have 
also studied SIR complexed to cyanide (in three 
oxidation states) and carbon monoxide. Exchange- 
coupling is indicated in the oxidized cyano complex; 
in the reduced CN- and CO complexes the heme is 
low-spin ferrous and thus in a state unfavorable 
for the development of interatomic exchange. 
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The ability of a substance to participate in 
competing reactions presents difficulties but if the 
problems can be resolved a clearer picture of the 
behavior in all reaction modes may be forthcoming. 
Oxalacetate is involved in a number of different 
biological reactions which are catalyzed by metallo- 
enzymes. Many of these reactions are amenable to 
independent investigation in model systems employ- 
ing metal ions. 

Decarboxylation is one reaction mode of oxac2- 

which has attracted interest for many years owing 
to strong resemblances between the rate dependen- 
cies of the enzymic and model systems on metal ion 
concentration. The Steinberger-Westheimer mecha- 
nism had early been accepted as the means by which 
metal ions catalyzed oxac’- decarboxylation: 

-co2 
Mz+ + oxac2- + M(oxac) -----+ 

H+ 
M(enolatepyruvate) -----+ M(pyruvate) 

Prevailing evidence indicates that the activation 
barrier is lowered by the complexation of the high 
energy enolate of pyruvate. 

Enolization and hydration reactions of oxac2- 
procede within the same time frame and are closely 
entwined. Resolved rate data show that the reactions 
are subject to acid and base catalysis. Proton cata- 
lysis appears to be equally effective for both, but 
large differences are evident in base catalysis. Hydra- 
tion rates are sensitive to bases possessing an oxygen 
donor atom. OH- is a very efficient catalyst and even 
Hz0 catalyzed rates are appreciable. Tertiary amines 
are found to be weak catalysts. Enolization appears 
to be more susceptible to softer bases. The rate cons- 
tant for the OH catalyzed path is l/6 as large as 
that determined for hydration, and Hz0 catalysis is 
negligible; however, tertiary amines are potent cata- 
lysts and the more basic ones exceed OH- in acti- 
vity. Different sites are involved in catalysis. Enoliza- 
tion involves the removal of a -CH2- proton from 


