Minisymposium: Calcium Binding Sites in Proteins Convener: R. BRUCE MARTIN; Charlottesville, Va., U.S.A.

C1

Calcium in Biological Systems

R. BRUCE MARTIN

Chemistry Department, University of Virginia, Charlottesville, Va. 22901, U.S.A.

In physiological fluids calcium ion takes part in many processes. Among these are muscle contraction, microtubule formation, hormonal responses, exocytosis, fertilization, neurotransmitter release, blood clotting, protein stabilization, intercellular communication, mineralization, and cell fusion, adhesion, and growth. Most of these Ca^{2+} related activities occur by interactions with proteins, which Ca^{2+} may stabilize, activate, and modulate.

In extracellular fluids the free or weakly bound Ca^{2+} concentration is about 1 mM. Within many cells the free Ca^{2+} concentration in the cytosol is only 0.1 μ M, 10⁻⁴ times less than in extracellular fluids. Cell membranes contain pumps, Ca-ATPases, that aid in maintaining the extraordinary concentration gradient. However, a substantial amount of Ca^{2+} occurs within cells, some of it bound tightly to proteins. In response to a stimulus the free Ca^{2+} concentration may increase about 10 times. Thus proteins that participate in these responses possess Ca^{2+} dissociation constants in the μ M range. The cytosolic Ca^{2+} concentration change is achieved rapidly, and free Ca^{2+} serves as a messenger or trigger for other interactions.

Ca²⁺ sites in proteins are composed of negatively charged and neutral oxygen donors; nitrogen donors seem unlikely, and none have been found. Protein oxygen donors derive from carboxylate groups, carbonyl oxygens of the amide backbone, and hydroxy groups of serine and threonine side chains.

 Ca^{2+} varies in its coordination number and bond lengths. The frequency of Ca^{2+} coordination numbers decreases in the order 8 > 7 > 6 > 9. Coordination about Ca^{2+} is basically ionic and spherical. $Ca^{2+}-O$ bond distances range from 2.3 to 2.6 Å. In solution, even within a single complex, there may be variability in bond distances and, in many cases, coordination number. To bind Ca^{2+} , proteins provide a pocket of appropriate size and shape with two or more negatively charged carboxylate side chains. Specific applications of these general principles appear in other papers in this symposium and in Vol. 17 of 'Metal Ions in Biological Systems', H. Sigel, ed.

Except for the charge difference, usually not crucial, tripositive lanthanide ions mimic many Ca²⁺

properties. Energy transfer from a nearby excited aromatic chromophore produces Tb^{3+} luminescence. The spectrum and relative intensity compared to the total luminescence intensity of the circularly polarized luminescence from parvalbumin and troponin-C are nearly identical. Specific Ca²⁺ binding sites in the two kinds of proteins are therefore similar. The excitation spectrum identifies the donor group in the energy transfer process as a phenylalanine side chain in parvalbumin and a tyrosine side chain in troponin-C. The two amine acids comprise homologous pairs in the two proteins.

C2

²⁵Mg, ⁴³Ca and ¹¹³Cd NMR Studies of Calcium Binding Proteins

STURE FORSÉN

Physical Chemistry 2, Chemical Centre, POB 740, Lund University, S-220 07 Lund, Sweden

NMR spectroscopy offers many alternative ways of studying the properties of calcium and magnesium binding proteins. One obvious way is to observe the spectra of spin I = $\frac{1}{2}$ nuclei like ¹H, ¹³C and ¹⁵N under various conditions as regards ion concentration, pH, temperature etc. Information pertaining to structure and dynamics of the protein may be gained in this way. As a result of recent developments in methodology and instrumentation NMR of the quadrupolar ions ²⁵Mg and ⁴³Ca has also developed into a useful tool in the study of calciproteins (cf. ref. 1-5). Through the combined use of isotopically enriched ²⁵Mg and ⁴³Ca, FT NMR techniques, high magnetic fields and a solenoid type of probe design, NMR studies of these cations are now feasible at millimolar, or even submillimolar, concentrations. The general type of information that can be obtained from ²⁵Mg and ⁴³Ca NMR is:

(i) association constants in the range $1-10^4 M^{-1}$; (ii) the competition of other cations for the Ca²⁺

and/or Mg²⁺ binding site(s); (*iii*) the effects of other protein ligands (drugs,

etc.) on the ion binding;

(*iv*) the apparent $p\bar{K}$ values of the groups involved in Ca²⁺ and Mg²⁺ binding;

(v) dynamic parameters *i.e.* chemical exchange rates and activation parameters or correlation time(s) characterizing the ion binding site(s).

Finally one can make profitable use of the fact that the ionic radii of Ca^{2+} and Cd^{2+} are very similar and substitute the spin I = ½ nucleus ¹¹³Cd for Ca²⁺. Comparative ¹H NMR studies of a number of calcium binding proteins indicate that the overall tertiary structures of the Ca²⁺ and Cd²⁺ loaded form of the proteins are very similar. NMR spectra of ¹¹³Cd bound to proteins — in many cases showing one or more fairly narrow signal(s) — give valuable complementary information on such phenomena as cooperativity of ion binding, the nature of the protein ligands and structural changes of the protein.

Some recent applications concern regulatory calcium binding proteins like skeletal and heart muscle troponin-C and calmodulin as well as enzymes and proenzymes like trypsinogen and trypsin, prophospholipase A_2 and phospholipase A_2 . Ca²⁺ exchange rates determined from ⁴³Ca NMR indicate the onrates to be about 10⁸ sec⁻¹ M^{-1} for the regulatory proteins but about two orders of magnitude lower, or $10^6 \text{ sec}^{-1} M^{-1}$, for the proenzyme/enzymes.

Through ¹¹³Cd NMR studies of native calmodulin and different proteolytic fragments the sequence of binding of Cd^{2+} and Ca^{2+} to the four calcium binding sites has been established.

¹¹³Cd NMR has been used to characterize the structural changes associated with the transformation of trypsinogen to trypsin or as a result of the formation of binary or ternary complexes. The ¹¹³Cd NMR data indicate that the structure of the calcium binding site remains essentially unchanged.

- 1 S. Forsén and B. Lindman, 'Calcium and Magnesium NMR in Chemistry and Biology' in "Ann. Rep. NMR Spectroscopy", (G. Webb, ed.). Vol. 11A, pp. 183-226, Acad. Press (1981).
- 2 S. Forsén and B. Lindman in 'Methods of Biochemical Analysis' (D. Glick, ed.). Vol. 27, pp. 290-486, J. Wiley & Sons (1981).
- 3 S. Forsén, T. Andersson, T. Drakenberg, E. Thulin and M. Swärd, 'Feder. Proc.', Vol. 41, no. 13 (November issue) (1982).
- 4 K. J. Neurohr, T. Drakenberg and S. Forsén, 'Magnesium-25 and Calcium-43' in "NMR of Quadrupolar and Less Receptive Nuclei: Chemical and Biological Applications" (P. Laszlo, ed.). Acad. Press, New York, (1983), in press.
- 5 H. Vogel, T. Drakenberg and S. Forsén, 'Calcium-Binding Proteins' in "NMR of Quadrupolar and Less Receptive Nuclei: Chemical and Biological Applications", (P. Laszlo, ed.). Acad. Press, New York, (1983), in press.

C3

Studies on the Regulation of Muscle Contraction by Troponin

J. D. POTTER*, H. G. ZOT, S. El-SALEH, S. IIDA and P. STRANG-BROWN

Section of Contractile Proteins, Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, 231 Bethesda Avenue, Cincinnati, Ohio 45267, U.S.A.

Two major areas of our current research interests will be discussed. The first deals with our attempts to understand the Ca²⁺-binding properties of Tn *in situ* and the second involves our recent antibody studies which are aimed at elucidating the structure of the Tn complex as well as the function of the various subunits in Ca²⁺ regulation.

Two different methods, one direct and one indirect, have been used to measure Ca²⁺ binding to troponin in thin filaments. Both methods demonstrate that actin lowers the affinity of the Ca²⁺ specific sites on Tn for Ca²⁺ by approximately an order of magnitude while the affinity of the Ca²⁺-Mg²⁺ sites remains unchanged. Furthermore, the Ca2+ dependence of myofibrillar ATPase activation corresponded exactly with Ca²⁺ binding to the Ca²⁺-specific sites as measured by the fluorescence change of TnC_{DANZ} specifically incorporated into myofibrils (H. G. Zot and J. D. Potter, J. Biol. Chem., 257, 7678 (1982)). These results lead us to two major conclusions. The first is that if actin alters the structure of Tn (as indicated by a change in Ca²⁺ affinity of the Ca²⁺-specific sites) then Ca²⁺ binding to the Ca²⁺-specific sites must alter the structure of actin. Since previous studies have shown that the Ca²⁺-specific sites are the sites involved in regulating actomyosin interaction, this postulated change in actin structure brought about by Ca²⁺ binding to these sites, may be the key event in muscle activation. The second conclusion is that the exchange of Ca²⁺ with the Ca²⁺-specific sites in muscle is probably faster than previously estimated from studies on isolated Tn where the affinity of the Ca²⁺specific sites is an order of magnitude higher. This is important since these sites must exchange Ca2+ rapidly in order to be able to respond to the rapid $[Ca^{2+}]$ transients which occur in muscle.

A monoclonal antibody $(IgG-\kappa_2\gamma_2)$ to STnI has been produced using the somatic cell fusion of spleen cells from CB₆F₁/J mice immunized with STnI with cells of the myeloma cell line SP2/O-Ag-14. The reaction of this antibody (C135) towards STnI has been determined using a) the ELISA technique, b) a triple sandwich immunodot technique, and c) by immunoblot on nitrocellulose after gel electrophoresis of skeletal myofibrils. C135 also interacts with cardiac TnI (CTnI) suggesting that both STnI and CTnI share