for states C, D' and D (an investigation of a state A model has already been published [7]). Using the nomenclature propsed in [8], the main RR frequencies are given in Table I.

TABLE I. RR Frequencies (cm^{-1}) of $[Fe^{II}(T_{\text{div}}PP)(X^{-})$ -(L)] Na+18C6 Complexes.

Complex		Porphyrin vibrations					$Fe - L$
$x-$	L	A	В	C	D		vibr.
$C_6HF_4S^-$		1341	a	a	a	369	
CI^{-}			1343 1355 1494		1545 369		
O _H		1344	-1355	_a	a	371	
$C_6HF_4O^-$		1343	1354	\overline{a}	1545	369	
$C_6HF_4S^-$	CO	1364		a	1567	380	479
$C_6HF_4S^-$	0,	1366		a	a	379	

All the pentacoordinated ferrous species exhibit very similar porphyrinic frequencies. They compare well with the frequencies of the typical high spin ferrous complex Fe(TPP)(2-Me Im) (A = 1345, B = 1361, $C = 1500$ and $D = 1538$ [8]). Moreover the A frequency of the carboxy adduct is very close to that of Fe(TPP)(py)(CO) [12], whereas that of the oxy adduct is the same as that of $Fe(T_{\text{piv}}PP)(1-Me \text{ Im})$ - $(0₂)$ [9]. Therefore our RR data do not stress any special π donor properties of the RS⁻ ligand that would induce an extra lowering of the oxidation state marker band frequencies.

Soret excitation of the low frequency RR spectrum is readily accessible for the carboxy adduct λ_{max} Soret 448 nm, λ_{exc} 454,5 nm: it reveals a new strong polarized band at 479 cm^{-1} . The intensity of this band decreases with partial photodissociation of the CO ligand. An isotopic substitution experiment, using 13 CO, induces a 5 cm⁻¹ lowering of its frequency. This is in good agreement with a calculated shift of -5 cm⁻¹ for the stretching vibration of the Fe-CO moiety, using the harmonic oscillator approximation. This leads to the assignment of this band to the Fe-CO stretching vibration. This value is to be compared to those observed for MbCO, HbCO [10] and P_{450} –CO (work in progress).

- E. BilI, U. Gonser and A. Trautwein, J. *Am. Chem. Sot.,* 103,7646 (1981) and references therein.
- P. M. Champion, I. C. Gunsalus and G. C. Wagner, *J. Am. Chem. Sot., 100,3743* (1978).
- Y. Ozaki, T. Kitagawa, Y. Kyogoku, Y. Imai, C. Hashimoto-Yutsudo and R. Sato, *Biochem., 17, 5827* (1978).
- T. Shimizu, T. Kitagawa, F. Mitani, T. IIzuka and Y. Ishimura, *Biochim. Biophys. Actu, 670, 236* (1981).
- 5 T. G. Spiro and J. M. Burke, *J. Am. Chem. Soc.*, 98, *5482* (1976).
- P. M. Champion, B. R. StalIard, G. C. Wagner and I. C. Gunsalus, *J. Am. Chem. Soc., 104, 5469* (1982).
- *7* P. Anzenbacher, Z. Sipal, B. Strauch, J. Twardowski and L. M. Proniewicz, J. *Am. Chem. Sot., 103,5928* (1981).
- *8 G.* Chottard, P. Battioni, J. P. Battioni, M. Lange and D. Mansuy, *Inorg. Chem., 20, 1718* (1981).
- 9 J. M. Burke, J. R. Kincaid, S. Peters, R. R. Gagne, J. P. Collman and T. G. Spiro, J. *Am. Chem. Sot., 100,6083* (1978).
- 10 M. Tsubaki, P. B. Srivastava and N. T. Yu, *Biochem., 21, 1132* (1982).

N8

Vanadium Catalyzed Oxygenation of *4,6-Di-tert***butylpyrogallol. A Model Reaction for Intradiol Dioxygenase**

YOSHITAKA TATSUNO*, MASANOBU TATSUDA, SE1 OTSUKA and KAZUHIDE TAN1

aNot observed. *Department of Chemistry, Faculty of Engineen'ng Science, Osaka University, Toyonaka, Osaka 560, Japan*

> Recently, we have reported the intradiol cleavage of 3,5-di-tert-butylcatechol with molecular oxygen catalyzed by several vanadium complexes as a model reaction for intradiol dioxygenase [11. Although the enzymatic [2] or the base catalyzed [3] cleavage of pyrogallol are known, metal catalyzed oxygenations of pyrogallol have not been reported yet. Here we wish to report vanadium catalyzed oxygenation of 4,6-di-tert-butylpyrogallol (1) and discuss the reaction mechanism based on the isotopic labelling experiment and the structure of the isolated reaction intermediate complex.

> Oxidation of \overline{I} (0.1 M in CH₂Cl₂) in the presence of a catalytic amount of VO(salen) (1 mol%) with molecular oxygen at room temperature for 20 h produced 3,5-di-tert-butyl-2-pyrone-6carboxylic acid (2) (41%), 3,5-di-tert-butyl-5-hydroxy-2-furanone (3) (8%) besides a quinone dimer (4) (24%) [see eqn. (I)]. These products were characterized from elemental analyses, IR, 'H NMR and mass spectra.

1 M. Sappacher, L. Ricard, R. Weiss, R. Montiel-Montoya, ¹⁸O isotopic labelling experiments indicated that 18 O atoms were incorporated into 2 (one atom) and 3 (two atoms) and that an 18 O atom in 2 was located in the carboxylic acid moiety, but not in the lactone moiety. These facts suggest that the main product 2 is formed by rearrangement of an intermediate (5) arising from the intradiol ring cleavage of I just as in the enzymatic reaction [see eqn. (2)]. As the compound 5 corresponds to the seven membered lactone intermediate proposed by Hamilton [4] in the enzyme reaction, the vanadium catalyzed

%@+EtO" (2) 5 **2**

oxygenation of the pyrogallol I proceeds via the Hamilton intermediate similarly to oxygenation of 3,5-di-tert-butylcatechol [1].

Reaction of I with VO(salen) under nitrogen atmosphere gave a complex (6) as a black brown powder (mp $135-40$ °C, dec.) which showed a similar catalytic activity for the oxygenation of I to that of VO(salen) [see eqn. (3)]. Based on the elemental analyses, IR, and ESR spectra, the structure of 6 was proposed as shown in Fig. 1. Thus,

$$
VO(salen) + 2 \cdot l \rightarrow 6 \tag{3}
$$

Fig. 1. Structure of 6.

the complex 6 can be regarded as a model complex for the enzyme-substrate complex. Coordination of the pyrogallol monoanion to the metal ion leading to the activation of the substrate is essential for the oxygenation of 1.

- 1 Y. Tatsuno, M. Tatsuda and S. Otsuka, J. *Chem. Sot., Chem. Commun.,* 1100 (1982).
- 2 Y. Saeki and M. Nozaki, *J. Biol. Chem., 255,846s* (1980).
- *3* A. Nishinaga, T. Itahara and T. Matsuura, *Bull. Chem. Soc. Japan, 47,* 1811 (1974), and references therein
- 4 G. A. Hamilton, in 'Molecular Mechanism of Oxygen Activation', ed. 0. Hayaishi, Academic Press, New York, 1974, pp. 405-451.

N9

$[Cu_4(SR)_6]^2$ ⁻, a Model approach for the Copper **Binding Centre of Yeast Cu-Thionein**

M. LINSS*, M. G. WELLER and U. WESER

Physiologisch chemisches Institut, Anorganische Biochemie, Hoppe-Seyler Str. 1, D- 7400 Tii bingen, F. R. G.

Unlike aliphatic mercaptanes, thiophenol and $[Cu(CH_3CN)_4]ClO_4$ form crystalline complexes of the type $\left[\text{Cu}_4\text{S}_6\right]X_2$. Me₄N⁺, Et₃NH⁺ or Bu₄N⁺ served as the respective suitable cation X. The copper to sulphur ratio was close to 1:1.5.

A comparison of the IR spectra of the free and the complexed ligand clearly demonstrates the disappearance of the characteristic $\nu(SH)$ vibration at 2570 cm^{-1} and supports the copper thiolate binding. From both the integration of the 'H NMR spectra and the elemental analyses a metal to ligand ratio of $1:1.5$ has been found.

The $Cu₄S₆$ cluster would nicely fit an adamantanetype structure as earlier described [1] (Fig. 1).

Cu-thionein from baker's yeast has a $\left[\text{Cu(SR)}_{2}\right]_4$ centre. According to EXAFS spectroscopy [2] each copper is tetrahedrally surrounded by four cysteine sulphurs. The best guess for arranging four $Cu(SR)₂$. units was a cubane type structure (Fig. 2).

Fig. 1. Adamantane arrangement of $\lceil Cu_4S_6|X_2$.

Fig. 2. The proposed $Cu₄S₈$ binding centre of yeast Cuthionein.

At present the above mentioned low molecular weight $\lceil Cu_4S_6 \rceil$ species are the closest models for the Cu-thionein metal binding centre. Of course a ratio of 1 Cu per 2 thiolate sulphurs would most successfully mimic the copper binding in this protein.

- 1 J. G. Dance and J. C. Calabrese, *Znorg. Chim. Acta, 19, L41* (1976).
- *2* J. Bordas, M. H. J. Koch, H.-J. Hartmann and U. Weser, *Znorg. Chim. Acta, 78,111* (1983).

NlO

Active Centre Models for Non Heme Iron Dioxygenases

M. G. WELLER*, U. WESER and C. RUH

Physiologisch chemisches Institut, Anorganische Biochemie, Hoppe-Seyler Str. I, D- 7400 Tiibingen, F.R. G.

In pyrocatechase, a non heme ferric dioxygenase, the substrate catechol is coordinated to the ferric centre, and subsequently cleaved by O_2 to give muconic acid (scheme) $[1, 2]$. Hitherto, this catalytic action could not be mimicked with model systems $[2]$.

Resonance Raman data demonstrated the Fe(III) to the bound to phenolate groups of pyrocatechase