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Groves et al. [3] have reported on corresponding 
oxidations using iron(M) porphyrins, and have 
presented evidence for involvement of an oxoiron(lV) 
porphyrin cation-radical intermediate, O=Fe*V_ 
(porp”). This is equivalent electronically to iron(M) 
plus the oxygen atom (from iodosylbenzene), and is 
overall at the same oxidation level as the active 
species in the cytochrome P-450 enzyme cycle; the 
enzyme systems utilize molecular O2 for alkene 
epoxidation and hydrocarbon hydroxylation, and 
active O=Ferv(porp”) intermediates have been impli- 
cated [3-S]. 
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The ruthenium(l11) octaethylporphyrin complex, 
Ru(OEP)(PPh,)Br, I, has been prepared by the oxida- 
tion of Ru(OEP)(PPh3), [I] with excess bromine, 
and fully characterized by spectroscopic and 
crystallographic methods [2]. We have found that 

Studies with our ruthenium(M) system have led 
to isolation of closely related cation-radical species. 
Thus, reaction of 1 with PhIO yields a green complex 
tentatively formulated as O=Ru’V(OEP+‘)Br, 2. A 
strong ESR signal at g = 2.00 (at 77 K or 20 “C), 
and a broad Soret band at 384 nm coupled with 
bands at 502 and 604 nm, are typical of cation- 
radical species [ 1,4] ; a stoichiometric spectrophoto- 
metric titration with PPha (complex 2: PPh, = 2.0) 
to give quantitatively OPPh3 and [Rurv(OEP)Br]20 
[6] (see Scheme), and detection of bromine as 
cyclohexylbromide in the hydrocarbon oxidations 
(close to stoichiometric based on Ru, up to 85%, 
see Table) are consistent with the oxygen and bro- 
mine content of 2, and with 2 being the active oxidiz- 
ing species via free-radical reactions [I, 9, lo] : 

TABLE I. Oxidation of Hydrocarbons with Iodosylbenzene Catalyzed by Ru(OEP)(PPhs)Br.a 

Substrate Products Y ieldb Total turnover 
on metal 

Styrene Styrene oxide 

Norbornene Norbornene oxide 

Cis-stilbene Stilbene oxide 

Trans-stilbene (No reaction) 

0 

0 

(1 : 1.7 : 0.5 : 3.4 : 0 ) 

(1 : 1.5 : 0.3 : o-3 : 0.3)d 

OH 0 Br 

000 
(1 : 8 : 9) 3.5c 1.7 

21 

8 

traceC 

10 

4 
_ 

_ 

3 1.5 

12d 6d 

?n CHzCIz at 20 “C after reaction time of 6 h. b Based on CeHsIO; this does not include loss of CeHsIO due to decomposi- 
tion to Phi and PhIOs (-40% over 6 h). ‘As in a, but reaction time of 15 h. din CHsCN. 
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Scheme. 

An inactive green complex, isolated at the end of 
the oxidations, and also formed by decomposition of 
2 in solution, is believed to be a O=Ru(OEP) species, 
3, since it reacts quantitatively with PPhs(l:I) to 
give the phosphine oxide and [Ru(OEP)lZ [8]. 
Species 3, which is rapidly converted by trace 
amounts of base into [Ru(OEP)(OH)] *O [7,8] , may 
contain an axial water ligand in which case it would 
resemble O=Ru(bipyridine),(py), which is known to 
oxidize PPhs by an oxygen atom transfer mecha- 
nism [ll]. 

Spectroscopic studies are in progress in attempts 
to characterize more fully the putative 0x0 species 
2 and 3. 
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Nitrosomonas oxidizes NH3 to HNOz with NH?- 
OH as an intermediate. Oxidation of NHzOH appears 
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to involve two multiheme cytochromes: hydroxyl- 
amine oxidoreductase (HAO) [l] and cytochrome c 
554 [2]. Hemes of HA0 have midpoint potentials 
varying from +lOO mV to -350 mV [3]. HA0 can 
accept electrons from NH,OH and pass them to cyt 
c 554 (midpoint potential -50 mV, 2). 

HAO, with an a3/3s subunit structure, contains 
7 c-type hemes and one unique heme P460 per 00 
dimer. The CO-binding heme P460 is essential for 
the NH,OH dehydrogenase activity and is specifically 
destroyed by HzO,. EPR studies of HA0 reveal 
several classes of low spin (s = r/2) hemes [4]. Two 
species, accounting for half of the hemes, have been 
assigned g-values by reductive EPR titration; g = 
3.06, 2.14, 1.35 and g = 2.98, 2.24, 1.44 [5]. Only 
four other EPR signals appear in the oxidized spec- 
trum (g = 3.38, 2.70, 1.85 and 1.66). These 
resonances titrate coordinately but are not typical 
of magnetically isolated heme spectra. The apparent 
g-values of these 4 resonances are frequency depen- 
dent suggesting that they arise from spin-interactions 
of the hemes. Frequency dependence of the type 
observed has not been previously reported. The 
Mossbauer spectrum of ferric HA0 contains a 
quadrupole doublet at 4.2 K in addition to the 
expected broad magnetically split spectrum, typical 
of s = % hemes. This doublet, which corresponds to 
at least one and probably two irons per c@dimer, 
has parameters (AE, = 2.1 mm/s and 6r+ = 0.24 
mm/s) which are typical of either low spin ferric 
heme with fast electronic spin relaxation or a pair 
of spin-coupled hemes [6]. We speculate that this 
doublet may be associated with the four frequency 
dependent EPR resonances. Heme P460 is not a com- 
ponent of the latter species since selective destruc- 
tion of P460 by H202 fails to alter the EPR spectrum 
of the oxidized HAO. Thus heme P460 of native 
HA0 is EPR silent. 

C’tochrome ~5.54 at pH 7 has an unusual 10 K 
EPR spectrum (g = 4.18,3.85) similar to intermediate 
spin (s = 3/2) complexes. At pH 4 the EPR spectrum 
consists of one high spin (g = 6.0, 2.0 and one low 
spin (g = 2.93, 2.25, 1.52) component. At pH 2 a 
single high spin component (g = 6.0, 2.0) is present, 
whereas two low spin forms are observed at pH 10.5. 
Optical spectra of oxidized cyt c 554 at 20 “C are 
consistent with high spin heme at pH 4 and low spin 
heme at pH 10.5. Reduced cyt c 554 reacts with O2 
and binds CO at pH 4: the CO spectrum has two 
Soret maxima indicating a different interaction with 
each heme. ‘H-NMR spectra at room temperature 
show contact shifted heme methylene resonances in 
both the low spin (lo-30 ppm) and high spin (60- 
100 ppm) Fe3+ spectral regions at all pH values 
between 4.5 and 9. Contact shifted resonances similar 
to those reported for s = 3/2 model heme complexes 
are not observed at this temperature. We conclude 
that the unusual low temperature EPR spectrum at 


