- 1 M. Hatano and T. Nozawa, in 'Advances in Biophysics., M. Kotani, S. Yomosa and M. Hatano (Eds.), Vol. 11, pp. 95-152, Japan Scientific Societies Press (1978).
- 2 T. Nazawa, M. Hatano, U. Nagashima, S. Obara and H. Kashiwagi, *Bull. Chem. Sot. Jpn.,* in press.
- 3 A. Schwenk, Z. *Phys.,* 213, 483 (1968).
- 4 A. Schwenk, *J. Magn. Reson., 5, 379* (1971).
- 5 T. Jenny, W. von Philipsborn, J. Kronenbitter and A. Schwenk,J. *Organomet. Chem., 205* (1981).
- *6* A. D. Adler, J. Org. *Chem., 32, 476* (1967).
- 7 P. Rothemund, *J. Am. Chem. Soc.*, 70, 1808 (1948).
- 8 W. M. Connor and D. K. Straub, *Inorg. Chem., 15, 2289* (1976).
- 9 J. S. Griffith and L. E. Orgel, Trans. *Faraday Sot., 53, 601* (1957).

Q16

Catalytic Oxidation of Hydrocarbons Using Iodosylbenzene in the Presence of a Ruthenium(III) Porphyrin Complex

TAK LEUNC, BRIAN R. JAMES and DAVID DOLPHIN

Chemistry Department, University of British Columbia, Vancouver, British Columbia, V6T I Y6., Canada

The ruthenium(l11) octaethylporphyrin complex, $Ru(OEP)(PPh₃)Br, I, has been prepared by the oxida$ tion of $Ru(OEP)(PPh₃)₂$ [1] with excess bromine, and fully characterized by spectroscopic and crystallographic methods [2]. We have found that

 CH_2Cl_2 solutions of *1* (5 \times 10⁻³ *M*) containing iodosylbenzene (0.1 M) catalyze at 20 $^{\circ}$ C the oxidation of certain olefins and cyclohexane $(0.2-0.5 \, M)$. Some of the oxidation data are summarized in Table I.

Groves et al. [3] have reported on corresponding oxidations using iron(M) porphyrins, and have presented evidence for involvement of an oxoiron(lV) porphyrin cation-radical intermediate, $O=Fe^{IV}$. $(porp⁺)$. This is equivalent electronically to iron(III) plus the oxygen atom (from iodosylbenzene), and is overall at the same oxidation level as the active species in the cytochrome P-450 enzyme cycle; the enzyme systems utilize molecular $O₂$ for alkene epoxidation and hydrocarbon hydroxylation, and active $O=Fe^{IV}(porp^{**})$ intermediates have been implicated $[3-5]$.

Studies with our ruthenium(III) system have led to isolation of closely related cation-radical species. Thus, reaction of *1* with PhIO yields a green complex tentatively formulated as $O=Ru^{1V}(OEP⁺)Br, 2. A$ strong ESR signal at $g = 2.00$ (at 77 K or 20 °C), and a broad Soret band at 384 nm coupled with bands at 502 and 604 nm, are typical of cationradical species $[1, 4]$; a stoichiometric spectrophotometric titration with PPh₃ (complex 2: PPh₃ = 2.0) to give quantitatively OPPh₃ and $\left[\text{Ru}^{\text{IV}}(\text{OEP})\text{Br}\right]_{2}\text{O}$ [6] (see Scheme), and detection of bromine as cyclohexylbromide in the hydrocarbon oxidations (close to stoichiometric based on Ru, up to 85%, see Table) are consistent with the oxygen and bromine content of 2, and with 2 being the active oxidizing species *via* free-radical reactions [I, 9, lo] :

TABLE I. Oxidation of Hydrocarbons with Iodosylbenzene Catalyzed by Ru(OEP)(PPh₃)Br.^a

Substrate	Products	Yield ^b	Total turnover on metal
Styrene	Styrene oxide	21	10
Norbornene	Norbornene oxide	8	4
Cis-stilbene	Stilbene oxide	trace ^c	$\overline{}$
Trans-stilbene	(No reaction)		
	Br o OH 05 : 34 : 0) 1.7 ± 1.7 (1) $(1 \div 15 \div 0.3 \div 0.3 \div 0.3)^d$	3 12^d	1.5 6 ^d
	ОH Br o		
	8 9) (1) ÷ ÷	3.5°	1.7

^aIn CH₂Cl₂ at 20 °C after reaction time of 6 h. b Based on C₆H₅IO; this does not include loss of C₆H₅IO due to decompo tion to PhI and PhIO₂ (\sim 40% over 6 h). ^CAs in *a*, but reaction time of 15 h. μ In CH₃CN.

Scheme.

An inactive green complex, isolated at the end of the oxidations, and also formed by decomposition of 2 in solution, is believed to be a O=Ru(OEP) species, 3, since it reacts quantitatively with $PPh₃(1:1)$ to give the phosphine oxide and $[Ru(OEP)]_2$ [8]. Species 3, which is rapidly converted by trace amounts of base into $\left[\text{Ru(OEP)(OH)}\right]_2$ O $\left[7, 8\right]$, may contain an axial water ligand in which case it would resemble $O=Ru(bipyridine)₂(py)$, which is known to oxidize PPh₃ by an oxygen atom transfer mechanism $[11]$.

Spectroscopic studies are in progress in attempts to characterize more fully the putative 0x0 species 2 and 3.

- 1 M. Barley, J. Y. Becker, G. Domazetis, D. Dolphin and B. R. James,J. *Chem. Sot. Chem. Commun., 982 (1981).*
- *2* T. Leung, D. Dolphin, F. W. B. Einstein, B. R. Jamesand A. C. WilIis, to be published.
- 3 J. T. Groves, R. C. Haushalter, M. Nakamura, T. E. Nemo and B. J. Evans, J. Am. Chem. Soc., 103, 2884 (1981).
- 4 D. Dolphin, B. R. James and H. C. Welborn, *Adv. Chem. Series, 201, 563 (1982).*
- *5* D. Dolphin, B. R. James and T. Leung, this volume.
- 6 Prepared by adding anhydrous HBr to $[Ru(OEP)(OH)]_2$ -0 [7, 81 ; the corresponding diamagnetic bromo dimer has been characterized by elemental analysis, NMR, and UV/VIS spectroscopy.
- 7 H. Masuda, T. Taga, K. Osaki, H. Sugimoto, M. Mori and H. Ogoshi,J. *Am. Chem. Sot., 103, 2199 (1981).*
- *8* J. P. CoIIman, C. E. Barnes, T. J. Collins, P. J. Brothers, J. Gallucci and J. A. Ibers, J. *Am.* **Chem. Sot., 103, 7030 (1981).**
- *9* **C.** L. Hill and B. C. Schardt, J. *Am. Chem. SOL, 102, 6374 (1980).*
- 10 J. T. Groves, W. J. Kruper, Jr., and R. C. Haushalte J. Am. Chem. Soc., 102, 6375 (1980).
- 11 B. A. Boyer, B. K. Sipe and T. J. Meyer, *Inorg.* **Chem., 20, 1475 (1981).**

417

Unusual Spin Interactions in the 24 Heme Hydroxylamine Oxidoreductase and Diheme Cytochrome c 554 from *Nitrosomonas*

K. K. ANDERSSON, J. D. LIPSCOMB and A. B. HOOPER* *Departments of Genetics and Cell Biology and Biochemistry, University of Minnesota, St. Paul, Minn 55108, U.S.A.*

Nitrosomonas oxidizes $NH₃$ to $HNO₂$ with $NH₂$ -OH as an intermediate. Oxidation of $NH₂OH$ appears to involve two multiheme cytochromes: hydroxylamine oxidoreductase (HAO) $[1]$ and cytochrome c 554 [2]. Hemes of HA0 have midpoint potentials varying from $+100$ mV to -350 mV [3]. HAO can accept electrons from $NH₂OH$ and pass them to cyt c 554 (midpoint potential -50 mV, 2).

HAO, with an $\alpha_3\beta_3$ subunit structure, contains 7 c-type hemes and one unique heme P460 per $\alpha\beta$ dimer. The CO-binding heme P460 is essential for the $NH₂OH$ dehydrogenase activity and is specifically destroyed by H_2O_2 . EPR studies of HAO reveal several classes of low spin ($s = \frac{1}{2}$) hemes [4]. Two species, accounting for half of the hemes, have been assigned g-values by reductive EPR titration; $g =$ 3.06, 2.14, 1.35 and g = 2.98, 2.24, 1.44 [5]. Only four other EPR signals appear in the oxidized spectrum (g = 3.38, 2.70, 1.85 and 1.66). These resonances titrate coordinately but are not typical of magnetically isolated heme spectra. The apparent g-values of these 4 resonances are frequency dependent suggesting that they arise from spin-interactions of the hemes. Frequency dependence of the type observed has not been previously reported. The Mossbauer spectrum of ferric HA0 contains a quadrupole doublet at 4.2 K in addition to the expected broad magnetically split spectrum, typical of $s = \frac{1}{2}$ hemes. This doublet, which corresponds to at least one and probably two irons per $\alpha\beta$ -dimer, has parameters ($\Delta E_{\mathbf{Q}} = 2.1$ mm/s and $\delta_{\mathbf{Fe}} = 0.24$ mm/s) which are typical of either low spin ferric heme with fast electronic spin relaxation or a pair of spin-coupled hemes [6]. We speculate that this doublet may be associated with the four frequency dependent EPR resonances. Heme P460 is not a component of the latter species since selective destruction of P460 by H_2O_2 fails to alter the EPR spectrum of the oxidized HAO. Thus heme P460 of native HA0 is EPR silent.

Cytochrome c *554* at pH 7 has an unusual 10 K EPR spectrum $(g = 4.18, 3.85)$ similar to intermediate spin (s = $3/2$) complexes. At pH 4 the EPR spectrum consists of one high spin ($g = 6.0, 2.0$ and one low spin (g = 2.93, 2.25, 1.52) component. At pH 2 a single high spin component $(g = 6.0, 2.0)$ is present, whereas two low spin forms are observed at pH 10.5. Optical spectra of oxidized cyt c 554 at 20 °C are consistent with high spin heme at pH 4 and low spin heme at pH 10.5. Reduced cyt c 554 reacts with $O₂$ and binds CO at pH 4: the CO spectrum has two Soret maxima indicating a different interaction with each heme. 'H-NMR spectra at room temperature show contact shifted heme methylene resonances in both the low spin $(10-30)$ ppm) and high spin (60-100 ppm) Fe3+ spectral regions at all pH values between 4.5 and 9. Contact shifted resonances similar to those reported for $s = 3/2$ model heme complexes are not observed at this temperature. We conclude that the unusual low temperature EPR spectrum at