- 11 J. Chatt, B. A. L. Crichton, J. R. Dilworth, P. Dahlstrom and J. Zubieta, J. *Chem. Sot. Dalton Trans., 1041* (1982).
- 12 J. R. Dilworth and J. Zubieta, J. *Am. Chem. Sot., 104, 365* (1982).
- 13 G. Butler, J. Chatt, G. J. Leigh, A. R. P. Smith and G. A. Williams, *Inorg. Chim. Acta, 28, 165* (1978).
- 14 F. C. March, R. Mason and K. M. Thomas, J. *Organomet. Chem., 96, C43* (1975).
- 15 J. Chatt, J. R. Dilworth, P. Dahlstrom and J. Zubieta, J. *Chem. Sot., Chem. Comm., 786* (1980).
- 16 J. Chatt, J. R. Dilworth and J. Zubieta, unpublished results.
- 17 R. J. Burt, J. R. Dilworth, G. J. Leigh and J. A. Zubieta, J. *Chem. Sot. Dalton Trans., 2295* (1982).
- 18 J. Hutchinson, J. R. Hyde, L. Throop and J. Zubieta, unpublished results.
- 19 B. A. L. Crichton. J. R. Dilworth. P. Dahlstrom and J. Zubieta, *Trans. Medal Chem., 5, 318* (1980).
- *20* J. R. Dilworth and J. A. Zubieta, *J. Chem. Sot. Chem. Comm., 132* (1981).

R16

Monomeric $Mo(V)$ and $Mo(VI)$ Complexes with Sterically Constrained Metal Centers

JOHN H. ENEMARK, KATSUMOTO YAMANOUCHI, KERRY BARNHART

Department of Chemistry, University of Arizona, Tucson, Ark. 85721, U.S.A.

DAVID COLLISON and FRANK E. MABBS

The Chemistry Department, Manchester University, Manchester MI3 9PL, U.K.

Bray has proposed a chemical mechanism for the reduction of xanthine oxidase by xanthine, which involves a monomeric molybdenum active center having fac stereochemistry $[1]$. This proposal has simulated our interest in preparation and characterization of monomeric $Mo(V)$ and $Mo(VI)$ complexes constrained to *fat* configuration by polydentate ligands such as hydrotris(3,5_dimethylpyrazolyl) borate, hereafter designated as $HB(Me₂pz)₃$.

The $HB(Me_2pz)^{-1}$ ligand has been extensively used to stabilize a variety of low valent molybdenum compounds [2]. Moreover, the same ligand has been found to stabilize the $Mo(V)$ center in $MoOCl₂$ - ${H B(Me_2pz)_3}(I)$ [3]. The relative stability of these compounds is attributed partly to the steric bulk of 3-methyl group on the ligand.

Mo(V) complexes of the type MoOXY{HB(Me₂ pz ₃} (where $X = Y = NCS$; $X = CI$, $Y = OR$ or SPh; $X = Y = SPh$) have been prepared by the substitution reactions of I and spectroscopically characterized. Esr spectra of $Mo(V)$ centers are sensitive to X and Y. Substitutions by thiolate ligands give smaller A_0 (Mo) and larger g_0 values. These substitutions also shift the Mo=O stretching vibration significantly

to lower wave numbers. A preliminary kinetic study has revealed that the rates of ligand substitution are very slow in these complexes, compared to those of known $MoOCl₃L₂$ complexes (where L is a monodentate ligand) [4].

Mo(VI) complexes of the type $MO₂X\{HB(Me₂$ $p(z)_{3}$ (X = Cl, Br, NCS) have been synthesized for the first time by the reaction of $MoO₂X₂$ (X = Cl, Br) or $MoO₂(NCS)₄²$ with the ligand, and characterized by spectroscopic methods including 95 Mo NMR.

Electrochemical studies and structural studies on these $Mo(V)$ and $Mo(VI)$ complexes will also be described.

- 1 R. C. Bray, in 'Biological Magnetic Resonance', Vol. 2, J. Reuben and L. J. Berliner (Eds.), Plenum Press, N.Y. 1980, p. 45.
- 2 S. Trofimenko, *Adv. Chem. Ser., 150, 289* (1976). A. Shaver, *Organometal. Chem. Rev., 3, 157* (1977).
- *3 S.* Trofimenko, *Inorg. Chem., IO, 504 (1971).*
- *4 C.* D. Garner, M. R. Hyde, F. E. Mabbs and V. I. Routledge, *J. Chem. Sot., Dalton Trans.,* 1198 (1977).

R17

Active Site Fe³⁺ Ligation by Substrates and Transition State Analogs of Protocatechuate 3,4 Dioxygenase

J. W. WHITTAKER and J. D. LIPSCOMB*

Department of Biochemistry, University of Minnesota, Minneapolis, Minn. 55455, U.S.A.

Current proposals for the mechanism [I] of Protocatechuate (PCA) 3,4 Dioxygenase (3,4 PCD) suggest monodentate (OH) binding of PCA to the active site $Fe³⁺$. This would promote ketonization of PCA, thereby creating a carbanion' at C-4 which could be directly attacked by O_2 . We have tested this proposal using ketonized substrate analogs and various spectroscopic probes. Our results confirm that ketonization is an essential step in the mechanism, but suggest that it occurs later in the cycle than the initial substrate complex.

We have shown that water is a ligand for *Brevibacterium fuscum* 3,4 PCD by observing hyperfine broadening from $17OH₂$ on all EPR resonances of the high spin Fe^{3+} [2]. The spectrum of the 3,4 PCD-PCA complex is too broad to detect direct displacement of H_2O by PCA. However, no broadening is observed in complexes with three slowly metabolized substrate analogs. In contrast, water remains bound in complexes with non-metabolized, monodentate analogs (e.g. 4-OH benzoate). Other small molecules also bind to Fe in $3,4$ PCD. CN^{\sim} binds in two steps; first it forms a high spin and then a low spin complex. It is likely that 2 CN^- molecules bind sequentially to Fe, suggesting that there are two displaceable ligands. This is supported by the observation that PCA binds to the high spin 3,4 PCD-CN^{\sim} complex to make a distinctly different ternary complex, but $CN^$ does not bind to the, presumably bidentate, 3,4 PCD-PCA complex.

The ketonized substrate analogs 2-OH-isonicotinic acid N-oxide (2-OH-INO) and 6-OH-nicotinic acid N-oxide have been synthesized [2]. These analogs form \sim 100-fold stronger complexes with 3,4 PCD than does PCA, thus they are proposed as transition state analogs. The EPR spectra of the 3,4 PCD-2-OH-IN0 complex is distinctly different than that of the PCA complex displaying small and negative zero field splitting $(D = -0.5 \text{ cm}^{-1})$ and intermediate rhombicity ($E/D = 0.25$). ¹⁷OH₂ remains bound in the inhibitor complexes suggesting that they are monodentate. CN⁻ displaces the water showing that small molecules have access to the iron in the ketonized analog complexes.

Transient kinetic studies show that the ketonized analogs bind in at least two phases. In the fast initial phase, a weak, readily reversible complex is formed, while in the slow $(t_{1/2} = 0.12 \text{ s})$ second phase, the essentially irreversible complex is formed. At -20 °C in glycerol-buffer solution two complexes can be stabilized. The first complex has optical and EPR spectral features very similar to those of the substrate complex. In contrast, the final complex is dramatically different. The native red color is bleached, due perhaps to a large blue shift of the spectrum. Similar bleached spectra are observed for early transient intermediates in the reaction with PCA [3]. We suggest that, like PCA, ketonized analogs initially assume a bidentate Fe ligation but then change to a monodentate ligation. Such a change could be coincident with a conformational change of the enzyme designed to stabilize a ketonized reaction cycle intermediate. The analogous change in the PCA complex apparently requires interaction with O₂. Thus, the ketonized analogs may model the first oxy complex. Such a complex would apparently have a vacatable Fe ligand site which could be used to stabilize an oxygenous intermediate.

Acknowledgement. This work was supported by NIGMS GM24689.

- 1 L. Que, J. D. Lipscomb, E. Miinck and J. M. Wood, *Biochim. Biophys. Acta, 485, 60 (1977).*
- *2* J. D. Lipscomb, J. W. Whittaker and D. M. Arciero, in 'Oxygenases and Oxygen Metabolism', M. Nozaki (ed), Academic Press, N.Y. 1982, p. 27.
- 3 C. Bull, D. P. Ballou and S. Otsuka, *J. Biol.* Chem., 256, 12681 (1981).

R18

Metal Complexes with Vitamin B_6 Derivatives. 3 Metal Chlorides of Pyridoxylidenedihydralazine and Pyridoxylideneisoniazide

SILVIA BARBU

Faculty of Pharmacy, Institute of Medicine and Pharmacy, 3400 Cluj-Napoca, Romania

Several studies in the chemical literature established the catalytic efficiency of some metal cations in the transamination of pyridoxal. A general transamination mechanism involving the metal cations was elaborated [1].

In view of the frequent therapeutic use of dihydralazine and isoniazide, as well as their numerous adverse reactions due to the carbonyl group blocking in the pyridoxal molecule $[2, 3]$ we studied the coordination capacity of pyridoxylidenedihydralazine (HPL-DHF) and pyridoxylideneisoniazide (HPL-HIN) for $Co(II)$, $Ni(II)$, $Cu(II)$, $Zn(II)$ and $Cd(II)$ ions.

Complex metal chlorides with the general formula $M_2(PL-DHF)Cl_2$ and M(PL-HIN)Cl were synthesized and isolated in solid state. The combination ratio M:L:Cl was 2:l :2 and 1 :l :l respectively. The complexes, orange-brown or yellow coloured, stable at room temperature, with high melting points (over $250 \degree C$ are water insoluble, partially soluble in alcohol and slightly soluble in basic solvents.

In order to establish the coordination geometry of the metal ion, the electronic spectra in diffuse reflectance by using samples pressed in BaS04 pellets were recorded. The electronic spectral parameters (the interelectronic repulsion parameter B, the nephelauxetic parameter β and the crystalline field splitting parameter 10 Dq) were calculated according to the Lever method [4jand included in Table I.

TABLE I. Electronic Spectral Parameters.

