tion for $Cu(II)$ -(histidine)₂ is comparable to that observed for Cu(II)-diethylenetriamine-imidazole. Therefore, at physiological pH, a single imidazole is equatorially coordinated to the metal ion. At pH 3.4, where the predominant species are Cu(II)-aquo and the low pH intermediate, the modulation pattern characteristic of coordinated imidazole is still observed. Thus imidazole remains bound to Cu(I1) here as well.

R28

Resonance Raman Spectroscopy of Binuclear Iron Centers.

Hemerythrin, Ribonucleotide Reductase and Iron Phenanthroline Complexes

THOMAS M. LOEHR

Department of Chemistry and Biochemical Sciences, Oregon Graduate Center, 19600 N. W. Walker Road, Beaverton, Oreg. 97006, U.S.A.

Binuclear iron centers are known to be present in the respiratory protein, hemerythrin $[1]$, and in the enzyme, ribonucleotide reductase [2]. These centers are characterized by strong antiferromagnetic coupling $(-J \approx 100 \text{ cm}^{-1})$ of the two ferric ions, and by one or more intense absorption bands between 320 and 380 nm ($\epsilon \approx 4000 \, M^{-1} \, \text{cm}^{-1}$ per Fe atom). These properties have long been ascribed to the presence of a μ -oxo bridge between the iron atoms. Verification of such a bridge was obtained in the 2.2-A resolution crystal structure of azidomethemerythrin [3].

Resonance Raman spectroscopy provides an additional valuable technique for the detection and characterization of binuclear iron centers. The Fe-O-Fe symmetric stretch, v_s (Fe-O-Fe), is Raman active and the intensity of this vibration may be enhanced by excitation within the Fe-O-Fe charge transfer band in the near ultraviolet. As a model system, we have investigated the resonance Raman spectra of binuclear 1,10-phenanthroline (phen) complexes of iron(III) [4]. The complex $Fe₂O(phen)₄(NO₃)₄$ $7H₂O$ has a Raman peak at 395 cm⁻¹ which can be assigned to ν_s (Fe-O-Fe) on the basis of its frequency being appropriate to an Fe-O-Fe angle of 154', its absence from the spectrum of mononuclear complex $Fe(phen)_3(C1O_4)_3^3·3H_2O$, and its
intensity being dependent upon excitation intensity being dependent upon wavelength. The perchlorate and chloride salts of $[Fe₂O(phen)₄]⁴⁺$ have similar resonance-enhanced modes close to 400 cm⁻¹, and in all three cases the enhancement is maximized using 363.8 nm excitation.

Confirmatory evidence for an Fe-O-Fe vibration can be obtained from oxygen isotope exchange with H_2^{18} O solvent. For example, in the μ -oxo bridged dimer, $[Fe₂O(Cl)₆]'$, $v_s(Fe-O-Fe)$ at 458 cm $\overline{ }$ shifts to 400 cm⁻ in H₂^oO [5]. Similarly, the resonance-enhanced band at 507 cm⁻ in the Raman spectrum of azidomethemerythrin shifts to 490 cm^{-1} for a sample which has been fomredfromoxyhemerythrin in $H_2^{18}O$ [6]. We have now found evidence for the corresponding Fe-O-Fe vibration at 489 cm^{-1} in the resonance Raman spectrum of oxyhemerythrin, through the use of near-ultraviolet excitation 171. Furthermore, this band shows an isotope dependence on solvent $(H_2^{18}O)$, and appears to be in resonance with the 360 nm electronic transition of oxyhemerythrin. The resonance enhancement of the ν_{s} (Fe-O-Fe) peak intensity with ultraviolet excitation has also been observed for azidomethemerythrin [7] and for ribonucleotide reductase [2]. In contrast to hemerythrin, however, where the 0x0 group only exchanges during exogenous ligand replacement, the 0x0 group in ribonucleotide reductase undergoes facile exchange with solvent $(k_{obs}$ $= 8.3 \times 10^{-4} \text{ s}^{-1}$, indicating it is located in a more accessible site.

Acknowledgments. This work was supported in part by a grant from the National Institutes of Health (GM 18865). The author is indebted to his co-workers whose names appear in the citations below.

- 1 .I. Sanders-Loehr and T. M. Loehr, *Adv. Inorg. Biochem., I, 235* (1979).
- *2* B. M. Sjoberg, T. M. Loehr and J. Sanders-Loehr, *Biochemistry, 21, 96* (1982).
- *3* R. E. Stenkamp, L. C. Sieker, L. H. Lensen and J. Sanders-Loehr, *Nature, 291, 263* (1981).
- 4 J. E. Plowman, T. M. Loehr, C.Schauer and 0. P. Anderson, unpublished results.
- 5 R. M. Solbrig, L. L. Duff, D. F. Shriver and I. M. Klotz, J. *Inorg. Biochem., 17, 69* (1982).
- *6 S.* M. Freier, L. L. Duff, D. F. Shriver and I. M. Klotz, *Arch. B&hem. Biophys., 205, 449* (1980).
- *7* A. K. Shiemke, J. Sanders-Loehr and T. M. Loehr, unpublished results.

R29

SUPERQUAD - A New Computer Program for Determination of Stability Constants of Complexes by Potentiometric Titration

P. GANS

Department of Inorganic Chemistry, The University, Leeds LS2 9JT, U.K.

A. SABATINI and A. VACCA

Istituto di Chimica Generale ed Inorganica, Università and *I.S.S.E.C.C, C.N.R., Via J. Nardi 39, 50132 Florence, Italy*

We have developed, separately and together, a sequence of computer programs for the determina-