Migration of Anionic Bidentate Ligands between Different Palladium(II) Allyl Complexes

R. BERTANI, U. BELLUCO, P. UGUAGLIATI

Centro Chimica Composti Metallorganici Elementi Transizione del C.N.R., Facoltà di Ingegneria, Padua, Italy

and B. CROCIANI

Istituto di Chimica Generale, Università di Palermo, Palermo, Italy

Received June 23, 1981

We have studied the mechanism of the following reaction:

Ia : $R^1 = R^2 = p - C_6 H_4 OMe$; $R^3 = Me$ Ib : $R^1 = p - C_6 H_4 OMe$; $R^2 = R^3 = Me$ Ic : $R^1 = R^2 = p - C_6 H_4 OMe$; $R^3 = H$

TABLE I. Rate Parameters.

The reaction was carried out in 1,2-dichloroethane (DCE) with the substrate I as perchlorate salt and with an excess of the anion A as triethylbenzyl-ammonium salt, under pseudo-first-order conditions. The progress of the reaction was monitored spectrophotometrically (400-500 nm), at constant concentration of ionic species, $F = 3 \times 10^{-2} M$ (tetrabutylammonium perchlorate). The exchange of ligands takes place via a stepwise mechanism analogous to that observed for the reaction of binuclear cationic complexes of type I, containing the *trans*-PdCl(L)₂ unit [L = AsPh₃, P(C₆H₄X-*p*)₃] with the anion A [1]:

The rate data are reported in Table I.

For the reactions involving **Ib** and **Ic** a linear dependence of k_{obs} on [A] is observed. This implies that the K[A] term in rate law (1) is $\ll 1$ [1]. For **Ic** the intercept is statistically unsignificant, essentially due to the very high slope.

The intermediate $I \cdots A$ is thought to arise from fast reversible interaction through chloride bridges involving the palladium centers of the $Pd(\eta^3-2-MeC_3H_4)$ moieties of the starting reactants, as suggested by ¹H nmr and electronic spectral data. This intermediate undergoes a subsequent slow rearrangement (k₂ step) via a trinuclear transition state:

T (°C)	$k_1 \ (min^{-1})$	$k_2 \ (min^{-1})$	K (M ⁻¹)	$k_2 K (M^{-1} min^{-1})$
15	0.015 ± 0.002	0.61 ± 0.05	12.9 ± 2	7.9
20	0.027 ± 0.007	1.09 ± 0.2	14.1 ± 4	15.4
25	0.043 ± 0.009	1.95 ± 0.35	13.8 ± 4	26.9
30	0.10 ± 0.01	3.3 ± 0.4	14.1 ± 3	46.5
30	0.021 ± 0.002	_	_	5.2 ^a
15	0.04 ± 0.05^{b}		_	213.0 ^a
	T (°C) 15 20 25 30 30 15	T (°C) $k_1 (min^{-1})$ 15 0.015 ± 0.002 20 0.027 ± 0.007 25 0.043 ± 0.009 30 0.10 ± 0.01 30 0.021 ± 0.002 15 0.04 ± 0.05^{b}	T (°C) $k_1 (min^{-1})$ $k_2 (min^{-1})$ 15 0.015 ± 0.002 0.61 ± 0.05 20 0.027 ± 0.007 1.09 ± 0.2 25 0.043 ± 0.009 1.95 ± 0.35 30 0.10 ± 0.01 3.3 ± 0.4 30 0.021 ± 0.002 $-$ 15 0.04 ± 0.05^b $-$	T (°C) $k_1 (min^{-1})$ $k_2 (min^{-1})$ $K (M^{-1})$ 150.015 ± 0.0020.61 ± 0.0512.9 ± 2200.027 ± 0.0071.09 ± 0.214.1 ± 4250.043 ± 0.0091.95 ± 0.3513.8 ± 4300.10 ± 0.013.3 ± 0.414.1 ± 3300.021 ± 0.002150.04 ± 0.05 ^b

^aFrom the linear plots of kobs vs. [A]. ^bStatistically unsignificant at the 95% confidence level of the fit.

The activation process involves opening of the five-membered α -diimino ring and coordination of each imino nitrogen to a palladium allyl unit. The activation parameters for this step (reaction Ia + A) are: $\Delta H_2^{\pm} = 19.0 \pm 0.1$ kcal mo Γ^1 , $\Delta S_2^{\pm} = -1.4 \pm 0.3$ e.u. The small value of the activation entropy agrees with the proposed trinuclear transition state, which involves a concerted intramolecular exchange of ligands.

The parallel step k_1 corresponds to a slow intramolecular rearrangement of I to a labile intermediate I* which then reacts rapidly with the anion A to give the final products. Also for this step the activation parameters ($\Delta H_1^{\pm} = 21.9 \pm 2 \text{ kcal mol}^{-1}$, $\Delta S_1^{\pm} = 1 \pm 5 \text{ e.u.}$) point to a transition state involving concerted α -dimino ring opening and migration of the bidentate dimethyldithiocarbamate ligand:

The pre-equilibrium constant appears to be virtually independent of temperature, suggesting a very small standard enthalpy.

On replacing the p-C₆H₄OMe group (R²) with a methyl group, the k₁ and k₂K terms are markedly reduced as a consequence of the increased stability of the five-membered α -diimino cycle towards ring opening [2, 3]. On the contrary, substitution of the methyl R³ group by a proton brings about a dramatic increase in the k₂K term, essentially due to an increased k₂ value. This results from a reduced stability of the cycle [2, 3] combined with a much lower steric hindrance of the R³ substituent.

References

- 1 B. Crociani, P. Uguagliati, R. Bertani and L. Calligaro, Inorg. Chim. Acta, 45, L75 (1980).
- 2 B. Crociani, T. Boschi and P. Uguagliati, Inorg. Chim. Acta, 48, 9 (1981).
- 3 P. L. Sandrini, A. Mantovani, P. Uguagliati and B. Crociani, Inorg. Chim. Acta, 51, 71 (1981).

