Phenyl Isocyanate Interactions with Tin(IV) Halides

CLIFFORD OWENS, JULIA M. WOODS, ANNE KELLY FILO

Department of Chemistry, Rutgers University, Camden, N.J. 08102, U.S.A.

LOUIS L. PYTLEWSKI

Department of Chemistry, Drexel University, Philadelphia, Pa. 19104, U.S.A.

DAVID E. CHASAN

W. R. Grace & Co., Hatco Chemical Division, Fords, N.J. 08863, U.S.A.

and NICHOLAS M. KARAYANNIS

Amoco Chemicals Corporation, Naperville, Ill. 60540, U.S.A.

Received March 13, 1979

Studies of the interactions of phenyl isocyanate with SnX_4 (X = Cl, Br, I) in carbon tetrachloride solution, at ambient temperature, and of the solid products isolated are reported. SnCl₄ and SnBr₄ yielded 1:2 adducts with $C_{c}H_{z}NCO$, under these experimental conditions. These complexes were characterized as octahedral trans-[SnX4(OCNC6- H_{5}]; the two phenyl isocyanate ligands are oxygenbonded to the Sn⁴⁺ ion and occupy trans positions, relative to each other, in the first coordination sphere of this metal ion. Stabilization of the cis-isomers in the solid state is apparently sterically hindered. owing to the presence of the bulky phenyl substituent in the C_6H_5NCO ligand. The interaction of SnI₄ with phenyl isocyanate resulted in the formation of reaction rather than addition products. A solid precipitate, formed in low yield, appears to be a mixture of organic compounds and a tin complex. The N:O (2:1) and Sn:I (1:1) atomic ratios in this precipitate, in combination with the infrared evidence, suggest that the reaction proceeds via either insertion of C₆H₅NCO between Sn-I bonds or partial ionization of SnI₄ in the presence of the organic ligand, while the organic components of the solid product are mixtures or reaction products of C_6H_5 -NCO and phenylimido($C_6H_5N=$) group derivatives.

Introduction

A wide variety of reactions of organic isocyanates (RNCO; R = alkyl or aryl) with metal salts and complexes have been reported. Various adducts have been isolated, as follows: $AIX_3 \cdot RNCO$ (X = OC_2H_5 , Cl, Br) [1-4], [(C_2H_5)₂ C_6H_5P]₂ReOCl₃ $\cdot RNCO$, [(C_6- H₅)₃P]RhCl $\cdot 2RNCO$ [5], [($CO_3Fe(RNCO)_2-$ Fe(CO)₃] [6], adducts with dibutyltin(IV) dilaureate [1], metal(II) naphthenates [7], VOCl₃·2RNCO [8], and [(C₆H₅)₃P]₂Ni·2RNCO [9]. Several modes of coordination of RNCO in its adducts have been proposed, *viz.*: unidentate, O-bonded [1-4], bidentate bridging, C,N-bonded [6], bidentate, chelating, O,N-bonded [7], *etc.* The decomposition of L₂-ReOCl₃·RNCO (L = (C₂H₅)₂C₆H₅P) to the phenylimido(C₆H₅N=) ligand complex L₂(C₆H₅N)ReCl₃ and CO₂ was attributed to the formation of L₂Cl₃Re-O as intermediate [5]. Phenylimido metal RN=C=O

complexes are also formed by decomposition of VOCl₃·2C₆H₅NCO, which yields (C₆H₅N)VCl₃ [8], and by reaction between C₆H₅NCO and Ru₃(CO)₁₂ (main product: (C₆H₅N)Ru₃(CO)₁₀) [10].

Quite frequently, the initial adduct formation is followed by insertion of RNCO between bonds of ____O

the metal ion with other ligands, e.g.:
$$X_2AI-N-C'$$

R
 X_2AI'
 $C-X$ (X = Cl, Br) [4, 11], R'Sn-N-C=O

NHCN
[12], C₆H₅N=COSn(CH₃)₃ [13], Hg- $\begin{pmatrix} R & O \\ N-C' & O \\ OCH_3 \end{pmatrix}_2$

[14], and several products of insertion of RNCO between metal-ethyl bonds (M = Al(III), In(III), Zn(II)) [4, 15–18]. Following the insertion of one RNCO molecule into a metal-ligand bond, additional RNCO groups can be inserted, one at a time, into the metal-RNCO bond. In this way, dimers, cyclic trimers (alkyl or aryl isocyanurates) (I) or linear polymers (N-substituted 1-nylons) (II) of RNCO can be obtained under appropriate conditions. Thus, a dimer of C_6H_5 -

NCO was produced during its reaction with AlCl₃ [3], and trimers of type (I) were obtained by reaction of RNCO with organotin oxides and alkoxides or tin acetylacetonate [19] or metal cyanates [20]. On the other hand, RNCO is homopolymerized at low temperatures to amorphous [21] or crystalline [22] polymers of type (II), in the presence of a variety of inorganic or organometallic catalysts, including NaCN or sodium solutions in N,N-dimethylformamide, sodium benzophenone ketyl, sodium naphthalene [21], C₂H₅Li and (C₂H₅)₂Be [22]. Nickel complexes, such as Ni(bipy)₂ (bipy = 2,2'-bipyridine) and [(C₆H₅)₃P]₄Ni, seem to catalyze the formation of mixtures of polymers of types (I) and (II) [9].

A number of more complex interactions of RNCO with metallic compounds have been also reported, *i.e.*: reaction of bis(acetylacetonato)Cu(II) with C₆H₅NCO leads to the formation of the corresponding bis-chelate of Cu(II) with the 3-(N-phenylcarbamoyl)-2,4-pentanedionato ligand (CH₃COC(NHC₆- H_5)COCH₃ [23]. Reaction of the polymeric [NH₂- $Cr(OC_6H_5)_2]_x$ with C_6H_5NCO yields a mixture of $Cr(OC_6H_5)_2[N(CONHC_6H_5)CON(C_6H_5)CONHC_6H_5]$ $Cr_{15}(OC_6H_5)_{20}(NH_2)_2(NH_3)(NHCONHC_6H_5)_6$ and [24]. RNCO reacts with PCl_5 as follows: RNCO + PCl_5 \rightarrow RN=CCl₂ + POCl₃ + RN=C=NR + COCl₂; intermediates proposed for this reaction include RNPCl₃ and RN-PCl₃ [25]. Finally, an oxidative addition of

 $p-\text{ClC}_6\text{H}_4\text{NCO}$ to $[(C_6\text{H}_5)_3\text{P}]_4\text{Ni}(0)$ leads to the formation of $[(C_6\text{H}_5)_3\text{P}]_2\text{Ni}^{I1}\text{Cl}(p-C_6\text{H}_4\text{NCO})$ [26].

These laboratories have previously reported on synthetic and characterization studies of tin(IV) halide adducts with O- [27] and O,N- [28] neutral ligands, as well as products formed by thermal decomposition of such adducts [29]. It was of interest to us to extend our studies on Sn(IV) complexes to the products of interaction between SnX₄ (X = Cl, Br, I) and C₆H₅NCO. The present paper deals with the syntheses and characterization of adducts of this ligand with SnCl₄ and SnBr₄ and with the reaction of phenyl isocyanate with SnI₄.

Experimental

Preparation of $SnX_4 2C_6H_5NCO$ Adducts (X = Cl, Br) Fisher reagent grade CCl₄ was treated with molecular sieve 4A (Fisher, grade 516) for a period of 48

hr, to remove traces of water [30]. The dried CCl₄ was then used for the preparation of a 0.2 M solution of C₆H₅NCO (Eastman Kodak) and 0.1 M solutions of SnCl₄ and SnBr₄. Subsequently, 75 ml of the C₆H₅NCO solution were mixed at ambient temperature with 150 ml of the SnCl₄ or SnBr₄ solution. Precipitation was immediate in both cases (with yields exceeding 75% of the theoretical). The new solid complexes were separated by filtration, about 1 hr after their precipitation, washed with CCl₄ and stored in an evacuated desiccator over anhydrous CaCl₂. Analytical results (Schwarzkopf Microanalytical Laboratory, Woodside, N.Y.) indicate that 1:2 adducts were formed in both cases, *i.e.*, found (calc.)%: SnCl₄·2C₆H₅NCO (light yellow powder): C 33.27 (33.71); H 2.23(2.02); N 5.65(5.62); Sn 23.42(23.80); Cl 28.91(28.43); SnBr₄·2C₆H₅NCO (tangerine orange crystals, yielding a lemon yellow powder upon grinding): C 24.68(24.85); H 1.78(1.49); N 4.31(4.14); Sn 17.84(17.54); Br 47.61 (47.24). Both of these adducts are stable in the atmosphere and soluble in polar organic solvents, including nitromethane. Attempts at melting point determinations revealed that no melting takes place at temperatures up to 200 °C; however, color changes were observed at elevated temperatures, as follows: SnCl₄°2C₆H₅NCO: change of color to white at 160-190 °C, while the original precipitate collapsed to a very fine powder; SnBr₄·2C₆H₅NCO: reduction of the size of the original crystals of this adduct at 160 °C, and change of the color to deep yellow at 172 °C. X-ray powder diffraction patterns suggest that the two new adducts are characterized by a rather low degree of crystallinity.

Reaction of C₆H₅NCO with SnI₄

Solutions of C_6H_5NCO and SnI_4 in CCl₄ were allowed to interact, under the conditions described above. This reaction resulted in the precipitation of a brownish-black solid in very small yields (less than 10%, on the basis of the amount of Sn present), analyzing as follows: C 66.33%; H 3.86%; N 11.22%; Sn 5.91%; I 6.52%; O (difference from 100%) 6.16%. This air-stable product is soluble in nitromethane and other polar organic solvents, and does not melt at temperatures up to 200 °C, but its color changes to deep yellow at 175 °C.

Infrared Spectral and Molar Conductivity Studies

Infrared spectra were obtained on KBr discs $(4000-600 \text{ cm}^{-1})$ and on Nujol mulls between highdensity polyethylene windows $(700-100 \text{ cm}^{-1})$ by using Perkin Elmer 621 and 181 spectrophotometers, calibrated by reference to a polystyrene standard [28, 31]. Molar conductivities were determined on $10^{-3} M$ nitromethane solutions of the complexes at 25 °C, by using a Yellow Springs Instrument Co., Model 31, Conductivity Bridge and a cell

L	SnCl ₄ L ₂	SnBr ₄ L ₂	Band Assignment
2282vs	2555ms,b	2560ms	v _{NCO} (as)
b	1632m	1645m	νc=0
b	1564vs	1560vs	$\nu_{C=N}$
1445m,sh	1480vvs	1479vvs	VNCO(sym)
632s, ^c 616m,sh,	638w,b, 624m, 609m,	640vw, 620m, 580m,	
569s, ^c 496m,	570ms,sh, 559ms,	560m, 542m,b,	
459vw, 410vw,sh,	540ms,b, 529s,	529ms, 510m,	$v_{\text{Ligand}} (650-200 \text{ cm}^{-1})$
384m, 246m	470vs, 381s,sh,	468vs, 384m,sh,	
	290s,sh, 240ms,vvb	288w,b	
	366vvs,vsp	362s,vsp	^v Sn–O
	309vvs,b		^{<i>v</i>} Sn–Cl
		225vvs,b	^ν Sn–Br

TABLE I. Pertinent Infrared Data for $C_6H_5NCO(L)$ and Its Adducts with SnX_4 (X = Cl, Br)^a, cm⁻¹.

Abbreviations: s, strong; m, medium; w, weak; b, broad; v, very; sh, shoulder; sp, sharp.

^aIr spectra obtained on a liquid film of the ligand and on KBr discs and Nujol mulls of the Sn(IV) complexes. The spectra of the SnX₄L₂ adducts are devoid of any absorptions attributable to the presence of water. ^bIr spectrum of C₆H₅NCO at 1720-1445 cm⁻¹; 1720vw, 1665vw, 1599s, 1588m,sh, 1512s, 1480w,sh, 1451m, 1445m,sh. ^cThe bands at 632 [41] and at 569 [40] cm⁻¹ in the spectrum of C₆H₅NCO, have been considered by different research groups to involve contribution from the out-of-plane δ_{NCO} mode.

calibrated with a 10^{-3} M tetra-n-butylammonium perchlorate solution in nitromethane ($\Lambda_{\rm M} = 92 \ \Omega^{-1} \ {\rm cm}^2 \ {\rm mol}^{-1}$ [32]).

Results and Discussion

SnCl₄ and SnBr₄ Adducts with C₆H₅NCO

The isolation of 1:2 adducts between SnX₄ (X = Cl, Br) and phenyl isocyanate suggests that the synthetic conditions employed were mild enough as to favor the production of these adducts rather than compounds involving insertion of C₆H₅NCO between Sn^{4+} and X⁻ ions. The metal to ligand molar ratio in the new adducts is the most common for SnX₄ complexes with unidentate neutral ligands. Of interest, as far as the $SnX_4 \cdot 2C_6H_5NCO$ adducts are concerned, is the site of coordination of the ambidentate [33] phenyl isocyanate ligand, and the possible steric influence of the bulky phenyl substituent in this ligand on the assumption of the trans- (III) rather than the cis- (IV) arrangement of the two C₆H₅NCO groups. Regarding the latter consideration, the cisgeometry seems to be favored in solid SnX_4L_2 adducts, when the ligands do not introduce any significant steric hindrance [27, 34-38]. On the other hand, not only severely sterically hindered ligands, such as hexamethylphosphoramide (hmpa) [34, 35] and diisopropylmethylphosphonate(dimp) [27], but also ligands with relatively "mild" steric features (e.g., tetrahydrofuran, tetrahydrothiophene, trimethylamine [36], pyrazine [39]) may force the

assumption of the *trans*-isomeric configuration by the solid adduct [27, 34–39]. Equilibria between the *cis*- and *trans*-isomeric forms of SnX_4L_2 have been shown to exist in solutions of the adduct, containing excess ligand, even in the case of adducts with severely sterically hindered ligands, such as hmpa; the free energies of activation of the *cis*- and *trans*-forms of these adducts differ by only a few kcal/mol [35].

Table I shows pertinent infrared data for C₆H₅-NCO [40-43] and its new adducts with SnCl₄ and SnBr₄. The location of the $\nu_{C=0}$ and $\nu_{C=N}$ bands is not diagnostic of coordination of C₆H₅NCO through either O- or N-, since these modes occur at roughly the same frequency regions (1650-1640 and 1620-1524 cm⁻¹, respectively) in the spectra of compounds involving coordination of this ligand through either of these sites [4, 13]. However, the significant shifts of the two v_{NCO} bands to higher wavenumbers indicate that coordination of the ligand is through the oxygen atom in the new tin(IV) halide adducts [4]. This is also supported by the identification of v_{sn-O} modes at 366-362 cm⁻¹ in the spectra of both of these adducts. These bands, which are undoubtedly due to tin-ligand stretching vibrational modes, appear

in the general region of occurrence of v_{Sn-O} in tin tetrahalide adducts with neutral O-ligands (e.g., triorganophosphine oxides 429-304 cm⁻¹, triorganoarsine oxides 425-373 cm⁻¹ [38, 44], pyridine N-oxides 431-368 cm⁻¹ [45], dimethylsulfoxide 482 cm⁻¹ [38], C=O oxygen-bonded N,N-dialkyl-formamides 389–355 cm⁻¹ [46]). In contrast, the $v_{\text{Sn-N}}$ mode in corresponding SnX_4L_2 adducts with unidentate N-ligands occurs at considerably lower wavenumbers (i.e., alkyl cyanides 248-192 cm⁻¹ [36, 47], pyrazine 212-202 cm⁻¹ [39]). Hence, the assignment of the bands at 366-362 cm⁻¹ in the spectra of the new adducts as v_{Sn-O} is justifiable. The fact that C₆H₅NCO coordinates through oxygen in its adducts with Sn(IV) halides was not unexpected, since the corresponding adducts with AIX_3 (X = OC_2H_5 , Cl, Br) and dibutyltin(IV) dilaureate also contain O-bonded C₆H₅NCO [1-4]. It should be noted, however, that no clear-cut predictions can be made regarding the affinity of Sn⁴⁺ for O- or N-ligands. In fact, not only products of insertion of either N- [12] or O- [13] bonded C_6H_5 -NCO between bonds of Sn^{4+} with other ligands have been reported, but it was also established that a similar neutral ligand, namely urea, is N-bonded in $SnCl_4(urea)_2$ and O-bonded in $SnBr_4(urea)_2$ [33, 48].

Regarding the arrangement of the two C_6H_5NCO ligands in the first coordination sphere of the Sn⁴⁺ ion in the new adducts, the ir evidence is definitely in favor of the *trans*-form (III) (D_{4h} symmetry). In fact, the very sharp character of the ν_{Sn-O} bands and the absence of any additional absorptions attributable to this mode, clearly show that the ir spectra of the new adducts involve single ν_{Sn-O} absorptions. Furthermore, single ν_{Sn-Cl} or ν_{Sn-Br} absorptions are also observed in the usual regions of occurrence of these vibrational modes [27, 34–36, 38, 39, 44–47, 49]. These features favor the *trans*- over the *cis*configuration for the SnX₄(OCNC₆H₅)₂ adducts [27, 34–36, 38, 39, 49].

The molar conductivities of the new adducts $(\Lambda_M, \Omega^{-1} \text{ cm}^2 \text{ mol}^{-1} \text{ for } 10^{-3} M \text{ nitromethane solutions at 25 °C: SnCl₄(OCNC₆H₅)₂ 6; SnBr₄(OCNC₆-H₅)₂ 5) indicate that these compounds are non$ electrolytes [50]. Thus, on the basis of the overall evidence available, these complexes are formulated as*trans*-[SnX₄(OCNC₆H₅)₂]. It appears that the presence of the bulky phenyl substituent in C₆H₅-NCO results in the introduction of sufficiently severe steric hindrance as to make the stabilization of the*cis*-isomers unfavorable.

Reaction of C₆H₅NCO with SnI₄

When SnI_4 was allowed to interact with C_6H_5 -NCO, under our experimental conditions, a quite different reaction occurred. In fact, neither the true adduct nor an insertion product was precipitated. The analytical results for the solid reaction product cannot be logically interpreted in terms of the presence of a single species. It is much more likely that we are dealing with a mixture, consisting mainly of an organic product, contaminated with smaller amounts of a Sn⁴⁺ complex involving one iodide ion per Sn atom. The ir spectrum of this solid product $(4000-100 \text{ cm}^{-1})$ is a follows: 3200s, 3150m,sh, 3030 mw, 2920mw,sh, 2860w,sh, 2480w,b, 2350vw,sh, 2260vw,sh, 2110vvw, 1930vvw,b, 1865vvw, 1840vvw, 1788vvw, 1762vvw, 1705vvw,sh, 1692vw, 1670vw, 1613s, sh, 1580vvs, 1535vvs, 1500s, sh, 1444vs, 1429ms, sh, 1412mw, sh, 1392m, 1339s, 1298vs, 1280vvs, 1260m, sh, 1241m, 1216s, 1173s, 1141svs, 1109mw,sh, 1045w,vb, 960m, 917vw, 840vvw, 791w, 745vw,b, 700ms, 650mw, 631mw, 626mw,sh, 610vw, 555w,b, 504w, 482w,sh, 435vw,b, 407vw,sh, 375vw,b (extremely weak and broad bands with poorly defined maxima, characterize the spectrum at 350- 100 cm^{-1}).

The preceding ir spectrum seems to rule out the presence of any of the known homopolymers of C₆H₅NCO (cyclic or linear) as major components of the isolated solid product. In fact, all these polymers exhibit medium to strong $\nu_{C=0}$ and other absorptions at 1870-1600 cm⁻¹, as follows (cm⁻¹): cyclic dimer 1709 [51]; phenyl isocyanurate(I) 1711-1695 [20, 51, 52]; crystalline linear homopolymer(II) several maxima at 1870-1620 [22]; amorphous linear homopolymer(II) 1709 [21]. In contrast, our product shows only very weak absorption at 1870-1620 cm⁻¹, with the first strong band with possible $v_{C=0}$ character occurring at 1613 cm⁻¹. Thus, it would appear that the product under discussion is probably formed by a complicated series of reactions. No serious attempts at the elucidation of these reactions can be made at this point; supplementary studies, aimed at the preparation of larger amounts of the solid product, as well as the isolation and identification of the various species remaining in solution, are to be undertaken in the near future. Nevertheless, the following remarks can be made: 1) Since the N to O atomic ratio in the solid product is about 2:1 and the Sn to I ratio is 1:1, half of the C_6H_5NCO oxygen and $\frac{3}{4}$ of the SnI₄ iodine seem to have been eliminated. 2) The ir spectrum of this product, at 1800-1500 cm⁻¹, shows similarities to those of various reaction products of C_6H_5NCO with Lewis acids or bases, e.g. (cm⁻¹): $R_2AI-OC(R')=NC_6H_5$ (R,R' = alkyl) 1605m, 1590-1585m, 1575-1545vs [16]; Cl₃V=NC₆H₅1600s, 1550w (differing from the spectrum of its precursor VOCl₃(C₆H₅NCO)₂: 1790–1780vw, 1700vs, 1670s, 1610s, 1600s, 1580s, 1510vs) [8]; C₆H₅N=C(O)N-(C₂H₅)₃ 1715vw, 1690vw, 1640m, 1590ms, 1530ms,b [1]. 3) Both Sn⁴⁺ [53, 54] and I⁻ [55] reportedly catalyze reactions of RNCO with a variety of organic compounds.

On the basis of the preceding remarks, it seems reasonable to speculate that part of C₆H₅NCO reacts with SnI₄ to yield products involving either the phenylimido($C_6H_5N=$) group or some of its derivatives (e.g., C₆H₅N=C=NC₆H₅ or C₆H₅N=Cl₂), via intermediates such as C_6H_5NC —O and $C_6H_5N=C_6H_5N$ —SnI₂

SnI₂ [25]. The main component of the final product would then be produced by reaction of this initially formed species with unreacted C₆H₅NCO. As far as the tin-containing component of the final solid product is concerned, no conclusions regarding the nature of the ligands present can be reached, since medium to weak ir bands occur only in the v_{Sn-C} region (630–490 cm⁻¹) [56], while v_{Sn-O} , v_{Sn-N} (490–190 cm⁻¹) and ν_{Sn-I} (below 200 cm⁻¹) regions are characterized by very weak absorptions.

The reactions between C₆H₅NCO and SnI₄, leading to the formation of the dark precipitate can be considered as proceeding via either insertion of C₆-H₅NCO between Sn-I bonds or the formation of ionic species (i.e., $[Sn(C_6H_5NCO)_nI_{6-n}]I_n)$. Both these initial reactions would occur much more easily with SnI₄, relative to SnCl₄ or SnBr₄. In fact, the lattice energies in crystaline complexes of these salts decrease along the series Cl > Br > I, whilst the ease of ionization of SnX₄ decreases in the reverse order (e.g., 2,2'-bipyridine N-oxide(L) forms, under the same synthetic conditions, the neutral [SnX₄L] complexes for X = Cl, Br and the ionic species $[SnL_3]X_4$ for X = 1 [28]).

References

- 1 M. Pestemer and D. Lauerer, Angew. Chem., 72, 612 (1960).
- 2 F. Effenberger and R. Gleiter, Chem. Ber., 97, 472 (1964).
- 3 N. S. Dokunikhin and L. A. Gaeva, Zh. Obshch. Khim., 29, 297 (1959).
- 4 J. R. Horder and M. F. Lappert, J. Chem. Soc. A, 2004 (1968).
- 5 I. S. Kolomnikov, Yu. D. Kureshkov, T. S. Lobeeva and M. E. Vol'pin, Chem. Commun., 1432 (1970); Izv. Akad. Nauk SSSR, Ser. Khim., 1181 (1972).
- T. A. Manuel, Inorg. Chem., 3, 1703 (1964).
- L. Rand and J. A. McLean, Jr., J. Appl. Polymer Sci., 12, 7 467 (1968); M. E. Bailey, C. E. McGinn and R. G. Spaunbaugh, 132nd Nat. Meetg., Am. Chem. Soc., Atlantic City, N.J., September 1956; Preprints, Div. Paint, Plastics and Printing Ink Chem., No. 36.
- 8 A. Slawisch, Naturwiss., 56, 369 (1969); Z. anorg. allg. Chem., 374, 291 (1970).
- 9 T. Kashiwagi, M. Hidai, Y. Uchida and A. Misono, J. Polymer Sci., B, 8, 173 (1970).
- 10 E. Sappa and L. Milone, J. Organomet. Chem., 61, 383 (1973).
- 11 R. W. Alder, G. R. Chalkley and M. C. Whiting, J. Chem. Soc., C, 52 (1966).
- 12 A. J. Leusink and J. G. Noltes, Recl. Trav. Chim. Pays-Bas, 84, 585 (1965).

- 13 E. J. Kupchik, M. A. Pisano, D. K. Parikh and M. A. D'Amico, J. Pharm. Sci., 63, 261 (1974).
- 14 A. G. Davies and G. J. D. Peddle, Chem. Commun., 96 (1965)
- 15 H. Reinheckel and D. Jahnke, Chem. Ber., 97, 2661 (1964); H. Reinheckel, D. Jahnke and G. Kretzschmar, ibid., 99, 11 (1966).
- 16 H. Tani, T. Araki and H. Yasuda, J. Polymer Sci., B, 4, 727 (1966).
- 17 H. Tada, K. Yasuda and R. Okawara, J. Organomet. Chem., 16, 215 (1969); H. Tada and R. Okawara, J. Org. Chem., 35, 1666 (1970).
- 18 G. E. Coates and D. Ridley, J. Chem. Soc. A, 1064 (1966).
- 19 A. J. Bloodworth and A. G. Davies, J. Chem. Soc., 6858 (1965); I. Wakeshima and I. Kijima, Bull. Chem. Soc. Japan, 48, 953 (1975).
- 20 P. A. Argabright, B. L. Phillips and C. H. DePuy, J. Org. Chem., 35, 2253 (1970); P. A. Argabright and B. L. Phillips, J. Heterocycl. Chem., 7, 725 (1970).
- 21 V. E. Shashoua, W. Sweeny and R. F. Tietz, J. Am. Chem. Soc., 82, 866 (1960); V. E. Shashoua, ibid., 81, 3156 (1959).
- 22 G. Natta, J. DiPietro and M. Cambini, Makromol. Chem., 56, 200 (1962)
- 23 Yu. N. Nizel'skii and T. E. Lipatova, Teor. Eksp. Khim., 6, 838 (1970).
- 24 O. Schmitz-Dumont and K.-H. Ohler, Z. anorg. allg. Chem., 306, 63 (1960).
- 25 H. Ulrich and A. A. R. Sayigh, J. Chem. Soc., 5558 (1963).
- 26 M. Hidai, T. Kashiwagi, T. Ikeuchi and Y. Uchida, J. Organomet. Chem., 30, 279 (1971).
- 27 C. Owens, N. M. Karayannis, L. L. Pytlewski and M. M. Labes, J. Phys. Chem., 75, 637 (1971).
- 28 C. Owens, J. M. Woods, A. K. Filo, L. L. Pytlewski, A. N. Speca and N. M. Karayannis, Synth. React. Inorg. Met.-Org. Chem., 8, 17 (1978).
- 29 C. Owens, L. L. Pytlewski, N. M. Karayannis, J. Wysoczanski and M. M. Labes, J. Polymer Sci., B, 8, 81 (1970); C. M. Mikulski, N. M. Karayannis, J. V. Minkiewicz, L. L. Pytlewski and M. M. Labes, Inorg. Chim. Acta, 3, 523 (1969).
- 30 D. E. Chasan, L. L. Pytlewski, R. O. Hutchins, N. M. Karayannis and C. Owens, Inorg. Nucl. Chem. Lett., 11, 41 (1975).
- 31 A. N. Speca, L. S. Gelfand, L. L. Pytlewski, C. Owens and N. M. Karayannis, Inorg. Chem., 15, 1493 (1976).
- 32 J. F. Coetzee and G. P. Cunningham, J. Am. Chem. Soc., 87, 2529 (1965); A. K. R. Unni, L. Elias and H. I. Schiff, J. Phys. Chem., 67, 1217 (1963).
- 33 A. H. Norbury and A. I. P. Sinha, Quart. Rev., 24, 69 (1970).
- 34 E. LeCoz and J. Guerchais, Bull. Soc. Chim. France, 80 (1971).
- 35 S. J. Ruzicka and A. E. Merbach, Inorg. Chim. Acta, 20, 221 (1976); S. J. Ruzicka, C. M. P. Favez and A. E. Merbach, ibid., 23, 239 (1977).
- 36 I. R. Beattie, G. P. McQuillan, L. Rule and M. Webster, J. Chem. Soc., 1514 (1963); I. R. Beattie and L. Rule, ibid., 3267 (1964).
- 37 C.-I. Bränden, Acta Chem. Scand., 17, 759 (1963).
- 38 P. G. Harrison, B. C. Lane and J. J. Zuckerman, Inorg. Chem., 11, 1537 (1972).
- 39 M. Goldstein and W. D. Unsworth, Spectrochim. Acta, 27A, 1055 (1971).
- 40 C. V. Stephenson, W. C. Coburn, Jr. and W. S. Wilcox, Spectrochim. Acta, 17, 993 (1961).
- 41 G. W. Chantry, E. A. Nicol, D. J. Harrison, A. Bouchy and G. Roussy, Spectrochim. Acta, 30A, 1717 (1974).

- 42 Š. Stankovský and Š. Kováč, Chem. Zvesti, 28, 247 (1974).
- 43 P. Delorme, J. Chim. Phys. Physicochim. Biol., 61, 1439 (1964); N. S. Ham and J. B. Willis, Spectrochim. Acta, 16, 279 (1960).
- 44 J. P. Clark, V. M. Langford and C. J. Wilkins, J. Chem. Soc. A, 792 (1967).
- 45 C. E. Michelson, D. S. Dyer and R. O. Ragsdale, J. Inorg. Nucl. Chem., 32, 833 (1970); Y. Kawasaki, M. Hori and K. Uenaka, Bull. Chem. Soc. Japan, 40, 2463 (1967).
- 46 T. N. Srivastava, S. K. Tandon and N. Bhakru, J. Inorg. Nucl. Chem., 38, 2311 (1976).
- 47 M. F. Farona and J. G. Grasselli, Inorg. Chem., 6, 1675 (1967).
- 48 D. S. Bystrov, T. N. Sumarakova nd V. N. Filiminov, Optics & Spectroscopy, 9, 239 (1960).

.

- 49 R. J. H. Clark, Spectrochim. Acta, 21, 955 (1965).
- 50 W. J. Geary, Coord. Chem. Rev., 7, 81 (1971).
- 51 J. I. Jones and N. G. Savill, J. Chem. Soc., 4392 (1957).
- 52 I. C. Kogon, J. Am. Chem. Soc., 78, 4911 (1956).
- 53 F. Hostettler and E. F. Cox, Ind. Eng. Chem., 52, 609 (1960).
- 54 J. W. Britain and P. G. Gemeinhardt, J. Appl. Polymer Sci., 4, 207 (1960).
- 55 M. F. Sorokin and L. V. Kurilo, Tr. Mosk. Khim-Tekhnol. Inst., No. 61, 133 (1969); Chem. Abstr., 74, 41605 (1971).
- 56 R. J. H. Clark and C. S. Williams, Spectrochim. Acta, 21, 1861 (1965).