Isolation and Characterization of $Bis(\eta-methylcyclopentadienyl)$ dihalotitanium(IV)

KAILASH CHANDRA, R. K. SHARMA, B. S. GARG* and R. P. SINGH Department of Chemistry, University of Delhi, Delhi-7, India

Received March 13, 1979

 $(\eta - MeC_5H_4)_2TiX_2$ (X = Br, I) have been prepared by the reaction of appropriate boron trihalides on $(\eta - MeC_5H_4)_2TiCl_2$. Improvements have been suggested over the known methods for preparing $(\eta - MeC_5H_4)_2TiCl_2$ and $(\eta - MeC_5H_4)_2TiF_2$. $(\eta - MeC_5H_4)_2TiX_2$ (X = Cl, Br, I) have also been prepared by an exchange reaction of haloacids on $(\eta - MeC_5H_4)_2TiF_2$. The complexes have been characterized by elemental analysis, conductivity measurements, i.r. and 1H n.m.r. spectroscopy.

Introduction

 $(\eta - C_5H_5)_2MX_2$ type complexes (X = F, Cl, Br, I and M = Ti, Zr, Hf) have been investigated by several workers [1-4]. The first alkyl substituted cyclopentadienyl complex reported was (η-MeC₅H₄)₂TiCl₂ [5]. In this communication $(\eta - MeC_5H_4)_2TiX_2$ (X = Br, I) have been prepared by the reaction of appropriate boron trihalide on (η-MeC₅H₄)₂TiCl₂ in CH₂-Cl₂. It is also suggested that the known methods for preparing $(\eta\text{-MeC}_5H_4)_2\text{TiCl}_2$ [5] and $(\eta\text{-MeC}_5H_4)_2$ -TiF₂ [6] can be modified to give better yield and ease of preparation. $(\eta-\text{MeC}_5H_4)_2\text{TiX}_2$ (X = Cl, Br, I) have been prepared in quantitative yield by an exchange reaction of haloacids on $(\eta - MeC_5H_4)_2TiF_2$. The complexes have been characterised by physical techniques and possible structures have been suggested.

Experimental

Reagents and Techniques

Well dried and purified solvents such as THF, CH_2Cl_2 , $C_6H_5NO_2$ etc. were used throughout the studies. All other chemicals used were of A.R. quality. $(\eta\text{-MeC}_5H_4)Tl(I)$ was prepared as cited in the literature [5].

I.r. spectra were recorded on a Perkin-Elmer Model 621 grating spectrometer. ¹H n.m.r. spectra were

recorded on a Varian A-60 spectrometer at a sweep width of 500 Hz, using TMS as an internal standard. The conductance measurements were made in nitrobenzene solution with a Beckman RC-18A conductivity bridge.

Preparation of (η-MeC₅H₄)₂TiCl₂ (Improved method) (1.9 g, 0.01 mol) TiCl₄ and (5.66 g, 0.02 mol) (η-MeC₅H₄)Tl(I) in 100 cm³ of THF were stirred in a flask fitted with mercury seal for 30 min. The resulting red coloured solution was filtered and the THF was evaporated off in vacuo. The residue on recrystallization from CHCl₃ gave dark red (η-MeC₅-H₄)₂TiCl₂. (95% yield) m.p. 216 °C. Anal. Found: C, 52.12; H, 5.19; Cl, 25.68; Ti, 17.40; M. W. 282.8. Calcd: C, 51.98; H, 5.05; Cl, 25.63; Ti, 17.33%; M.W. 277.

Preparation of $(\eta - MeC_5H_4)_2TiX_2$ (X = Br, I) from $(\eta - MeC_5H_4)_2TiCl_2$

The solution of BBr₃ (1.3778 g, 0.0055 mol) or BI₃ (2.155 g, 0.0055 mol) in 5 cm³ CH₂Cl₂ was added to the solution of (1.385 g, 0.005 mol) (η -MeC₅H₄)₂TiCl₂ in 30 cm³ CH₂Cl₂ dropwise with constant stirring. The reaction mixture was further stirred for 30 min. The volatile compounds were removed *in vacuo* and the residue on recrystallization from CHCl₃ gave reddish brown (η -MeC₅H₄)₂TiBr₂ (90% yield) m.p. 224 °C (*Anal.* Found: C, 40.23; H, 3.79; Br, 43.98; Ti, 13.20%; M.W. 374.4. Calcd: C, 39.34; H, 3.82; Br, 43.71; Ti, 13.12%; M.W. 366) or black (η -MeC₅H₄)₂TiI₂ (90% yield) m.p. 235 °C (d) (*Anal.* Found: C, 30.88; H, 3.16; I, 55.44; Ti, 10.50%; M.W. 468.3. Calcd: C, 31.30; H, 3.04; I, 55.22; Ti, 10.43%; M.W. 460).

Preparation of $(\eta - MeC_5H_4)_2TiF_2$ from $(\eta - MeC_5H_4)_2$ - $TiCl_2$

5 cm³ of 10% aqueous solution of NH₄F was added to an aqueous solution of (η-MeC₅H₄)₂TiCl₂ prepared by refluxing 1 g of (η-MeC₅H₄)₂TiCl₂ in 100 cm³ water (pH 1.2-2.0 w.r.t. HCl) for 30 min. The yellow precipitate formed was extracted with 5 × 10 cm³ of CH₂Cl₂. The combined extract was dried over anhydrous MgSO₄, filtered and evaporated

^{*}Author to whom correspondence should be addressed.

to 1/5th of its volume in vacuo. On adding petroleum ether (60-80 °C), yellow precipitate was obtained which on drying in vacuo gave more than 95% yield, m.p. 183 °C. Anal. Found: C, 60.12; H, 5.79; F, 15.49; Ti, 19.48%; M.W. 248.4. Calcd: C, 59.02; H, 5.74; F, 15.57; Ti, 19.67%, M.W. 244).

Preparation of $(\eta - MeC_5H_4)_2TiX_2$ (X = Cl, Br, I) from $(\eta - MeC_5H_4)_2TiF_2$

0.5 g, (η-MeC₅H₄)₂TiF₂ was stirred with 5 cm³ of 35% HCl or 47% HBr or 55% HI (refluxed under nitrogen) for 15 min. The resulting suspension was filtered and dried below 100 °C. The residue was dissolved in the minimum amount of CH2Cl2 and reprecipitated by adding petroleum ether (60-80 °C). On drying the precipitate in vacuo dark red (n-MeC₅H₄)₂TiCl₂ was obtained in quantitative yield, m.p. 216 °C (Anal. Found: C, 52.02; H, 5.15; Cl, 25.55; Ti, 17.42%; M.W. 285. Calcd: C, 51.98; H, 5.05; Cl, 25.63; Ti, 17.33%; M.W. 277) or reddish brown (η-MeC₅H₄)₂TiBr₂ in quantitative yield, m.p. 224 °C (Anal. Found: C, 40.22; H, 3.75; Br, 43.95; Ti, 13.22%; M.W. 375. Calcd: C, 39.34; H, 3.82; Br, 43.71; Ti, 13.12%; M.W. 366) or black $(\eta\text{-MeC}_5H_4)_2$ -TiI₂ was obtained in quantitative yield, m.p. 235 °C (d) (Anal. Found: C, 30.80; H, 3.12; I, 55.38; Ti, 10.48%; M.W. 470. Calcd: C, 31.30; H, 3.04; I, 55.22; Ti, 10.43%; M.W. 460).

Results and Discussion

(η-MeC₅H₄)₂TiCl₂ in high purity has been prepared in almost quantitative yield by the following

$$2(\eta\text{-CH}_3C_5H_4)\text{Tl} + \text{TiCl}_4 \longrightarrow (\eta\text{-CH}_3C_5H_4)_2\text{TiCl}_2 + 2\text{TlCl}$$

The reaction was completed within 30 min. It is an improvement over the known method [5] which takes 12 to 14 hr involving the use of $Na(CH_3C_5H_4)$ and gives very poor yield <65%.

The halogens are not completely exchanged even on long refluxing of KI or KBr with $(\eta\text{-MeC}_5H_4)_2$ -TiCl₂ in water, contradictory to the observation of Wilkinson and Birmingham [1]. Alternatively we have successfully prepared $(\eta\text{-MeC}_5H_4)_2$ TiX₂ in quantitative yield by the following reaction

$$3(\eta\text{-CH}_3\text{C}_5\text{H}_4)_2\text{TiCl}_2 + 2BX_3 \xrightarrow{\text{CH}_2\text{Cl}_2}$$

$$3(\eta\text{-CH}_3\text{C}_5\text{H}_4)_2\text{TiX}_2 + 2B\text{Cl}_3$$

$$X = \text{Br}, I$$

It is a good method and gives pure product owing to the ease of separation of the desired product from BCl₃ which is volatile at 12 °C and 760 mm pressure.

The known aqueous method for $(\eta\text{-MeC}_5H_4)_2\text{TiF}_2$ [6] gives poor yield (<60%) due to its high solubility

in water. We have improved the method by extracting almost all the fluorocomplex from aqueous solution in CH₂Cl₂ to give >90% yield.

The fluoride of $(\eta\text{-MeC}_5H_4)_2\text{TiF}_2$ is not completely exchanged in aqueous solution on treatment with NaX (X = Cl, Br, I). We have, however, obtained $(\eta\text{-MeC}_5H_4)_2\text{TiX}_2$ in quantitative yield by an exchange reaction of HX on $(\eta\text{-MeC}_5H_4)_2\text{TiF}_2$. In case of HI, F is completely exchanged only on refluxing.

I.r. Spectra

I.r. spectra of these complexes cannot be used for characterization as these are identical and show characteristic bands around 3100, 1495, 1370, 1130, 1025, 820–850 and 590 cm⁻¹. (n-MeC₅H₄)TiX₂ have wedge shaped sandwich structure. Solids are discrete, monomeric, substantially tetrahedral units in which MeC₅H₄ rings are slightly tilted in the plane [7]. Solution and solid i.r. spectra are identical.

¹H n.m.r. Spectra

In these complexes a sharp signal due to CH₃ protons and a multiplet for ring protons are obtained. The integrals of these signals are in 6:8 ratio. The ring proton part of the ¹H n.m.r. spectrum in these complexes is interpretable using 1st order splitting approximations.

CH₃ shields protons at $C_{2,5}$ more than at $C_{3,4}$. Adjacent and cross coupling constants $(J_{2,3};J_{2,4})$ are nearly equal and smaller than the chemical shifts differences between the two pairs of protons so that these should appear as an unsymmetrical triplet. In fluoro complex as F is n.m.r. active, each signal due to ring protons splits into a triplet and due to overlap, two broad multiplets are obtained [8], whereas in case of bromo and chloro complexes one broad multiplet is obtained. In iodocomplex iodine due to large size affects the ring protons and as a combined effect of I atom and CH₃ group two unsymmetrical triplets are obtained.

The τ values for ring protons are sufficiently separated (4.01-3.15 p.p.m.). Thus the n.m.r. spectrum is of much importance in characterization of these complexes. A trend in τ values for ring and CH₃ protons in these complexes is F > Cl > Br > I and is interpretable as indicative of $p_{\pi}-d_{\pi}$ bonding from halogen to titanium [9] (Table I).

Acknowledgement

One of the authors (K.C.) is thankful to the University Grants Commission, New Delhi for the award of a teacher fellowship under the Faculty Improvement Programme.

TABLE I. Proton Chemical Shifts (\(\tau\) values in p.p.m.) in CDCl₃ and Conductivity Data for (\(\tau\)-MeC₅H₄)₂TiX₂.

Complex	τ Values for Ring Protons, p.p.m.	τ Values for CH ₃ Protons, p.p.m.	Molar Conductivity ohm ⁻¹ cm ² mol ⁻¹	Concentration, M
$(\eta\text{-MeC}_5\text{H}_4)_2\text{TiF}_2$	3.66, 4.01	7.86	0.652	5 × 10 ⁻⁴
$(\eta\text{-MeC}_5\text{H}_4)_2\text{TiCl}_2$	3.68	7.68	0.548	6 × 10 ⁻⁴
$(\eta\text{-MeC}_5\text{H}_4)_2\text{TiB}_2$	3.55	7.6	0.492	7×10^{-4}
$(\eta\text{-MeC}_5\text{H}_4)_2\text{TiI}_2$	3.15, 3.56	7.56	0.451	5 × 10 ⁻⁴

References

- G. Wilkinson and J. M. Birmingham, J. Am. Chem. Soc., 76, 4281 (1954).
- 2 Dina Nath, R. K. Sharma and A. N. Bhat, *Inorg. Chim. Acta*, 20, 109 (1976).
- 3 P. M. Druce, B. M. Kingston, M. F. Lappert, T. R. Spalding and R. C. Srivastav, J. Chem. Soc., 2106 (1969).
- 4 P. M. Druce, B. M. Kingston, M. R. Lappert, R. C. Srivastav, M. J. Frazer and W. E. Newton, J. Chem. Soc., 2814 (1969).
- 5 L. T. Reynolds and G. Wilkinson, J. of Inorg. Nucl. Chem., 9, 86 (1959).
- 6 A. N. Nesemeyanov, O. V. Nogina, E. I. Fedin, V. A. Dubovitskii, B. A. Kvasov and P. V. Petrovskii, Dokl. Akad. Nauk SSSR, 205, 857 (1972).
- 7 N. V. Alekseev and I. A. Ronova, Zhur. Strukt. Khim., 7, 103 (1966).
- V. A. Dubovitsky, E. I. Fedin, N. S. Kochetkovo, A. N. Nesmeyanov, O. V. Nogina and P. V. Petrovsky, Tetrahedron, Suppl. 8, Part II, 389 (1966).
- H. C. Beachell and S. A. Butter, *Inorg. Chem.*, 4, 1133 (1965).