Mass Spectral Fragmentation Patterns of Trichloroimidophosphoranes, Cl₃PNX, and of Hexachlorodiazadiphosphetidines, (Cl₃PNX)₂

C. GLIDEWELL

Chemistry Department, University of St. Andrews, Fife, Scotland, U.K. Received September 29, 1975

Fragmentation patterns under electron impact of fifteen trichloroimidophosphoranes, Cl_3PNX , and of six hexachlorodiazadiphosphetidines, $(Cl_3PNX)_2$ are reported and discussed. The group X is variously: alkyl, alkoxyl, aryl, arylcarbonyl, arylsulphonyl, CONPCl₃, SO_2NPCl_3 or SO_3H .

Introduction

In connection with other work, we had occasion to prepare a number of imidophosphoranes $(XNPY_3)_m$ where m is 1 or 2, in particular those having Y = Cl. Although very many of these derivatives are known, the only physical properties reported¹ for most of them are parameters such as melting point, refractive index or density. With the exception of the ¹H and ³¹P n.m.r. spectra reported^{2,3} for compounds having X =alkyl, essentially no molecular spectroscopic data have been reported for this large class of compound. For many of these compounds, especially for those having X = aryl and Y = halogen, there is uncertainty even as to the value of m.¹ Accordingly we report now the results of a mass spectrometric study of some 21 of these compounds.

Experimental

Compounds having Y = CI were prepared by reaction of PCI_s with XNH₂ (if solid), or otherwise with XNH₃Cl, usually in refluxing carbon tetrachloride solution.⁴ If X = Ar or ArSO₂, then heating XNH₂ and PCI_s in the absence of a solvent is also satisfactory: however if X = alkyl, reaction in the absence of a solvent generally leads³ not to XNPCI₃ but to XCl and (NPCI₂)_n (n = 3 or 4). For reasons unknown, we were unable to prepare derivatives of the following amines: cyclohexylamine, *o*-phenylenediamine, sulphanilamide, *o*- and *m*-methoxyanilines. Purification was effected by recrystallisation from carbon tetrachloride or light petroleum. No impurities were revealed by ¹H or ³¹P n.m.r. spectroscopy, or by the mass spectra. Mass spectra were determined at 70eV using an A.E.I. MS902 instrument: accurate mass measurements were not generally necessary, since the number of chlorine atoms in a particular ion was readily recognised from the isotopic pattern, and this greatly facilitated the recognition and identification of ions.

Results and Discussion

Trichloroimidophosphoranes, Cl₃PNR

For the molecular ion of a monomeric trichloroimidophosphorane of type Cl_3PNR^+ , there are several possible decomposition routes: (i) loss of successive neutral chlorine atoms (Route A); (ii) loss of the neutral nitrene NR (Route B); (iii) loss of neutral PCl₃ (Route C); (iv) fragmentation of the group NR while still attached to Cl_3P .

$$Cl_{3}PNR^{+} \xrightarrow{-Cl} Cl_{2}PNR^{+} \xrightarrow{-Cl} Cl_{2}PNR^{+} \xrightarrow{-Cl} PNR^{+} (A)$$

$$Cl_3PNR^+ \xrightarrow{-NR} Cl_3P^+$$
 (B)

$$\operatorname{Cl}_3\operatorname{NR}^+ \xrightarrow{-\Gamma \operatorname{Cl}_3} \operatorname{NR}^+$$
 (C)

$$Cl_3PNR^+ \xrightarrow{-\kappa} Cl_3PNR''^+$$
 (D)

The simplest compounds of type Cl_3PE are Cl_3PO and Cl_3PS , whose mass spectra are summarised in Table I (as in all tables in this paper, mass numbers are quoted only for ions $({}^{35}Cl)_nX$, but relative abundances refer to all isotopic ions of composition Cl_nX).

TABLE I. Mass Spectra of Cl₃PO and Cl₃PS.

Ion	E = O	E = S
Cl ₃ PE ⁺	37	23
Cl ₂ PE ⁺	100	100
CIPE ⁺	5.9	5.7
PE ⁺	40	17
Cl_3P^+	1.5	3.8
Cl_2P^+	2.9	13
Cl ₂ P ⁺ ClP ⁺	12	11

Ion	X = OH		$X = C_6 H$	$X = C_6 H_5$		H₄CH₃-p
	m/e	RI	m/e	RI	m/e	RI
M ⁺	231	4.2	291	6.7	305	11.2
(M-X) ⁺	214	100	214	8.3	214	8.0
$(M-SO_2)^+$	169	0	227	7.5	241	4.0
(M-X-O)*	198	1.4	198	58	198	92
XN ⁺	_	_	91	20	105	10
X ⁺	-		77	100	91	100
Cl₃PN ⁺	150	19.4	150	3.1	150	7.5
Cl ₃ P ⁺	136	4.6	136	18	136	2.5
Cl ₂ PN ⁺	115	44	115	1.5	115	1.4
Cl ₂ P ⁺	101	44	101	71	101	6.3
CIPN ⁺	80	35	80	8.1	80	0
CIP ⁺	66	24	66	27	66	4.7

TABLE II. Mass Spectra of Cl₃PNSO₂X.

For both compounds, the base peak of the spectrum is the quasi-phosphonium ion $Cl_2P=X^+$ (X = O, S), with the decomposition of the molecular ion largely following Route A with but a little Route B.

Compounds Cl_3PNSO_2X

In Table II are set out the mass spectra of three compounds of type Cl_3PNSO_2X , having $X = OH, C_6H_5$,

TABLE III. Mass Spectra of $Cl_3PNC_6H_4X$ (X = p-CH₃ and p-CH₃O).

Ion	$\mathbf{X} = p \cdot \mathbf{CH}_3$		X = p	-CH ₃ O
	m/e	RI	m/e	RI
M ⁺	241	70	257	81
$(M-Cl)^+$	206	7.7	222	19
$(M-2Cl)^+$	171	22	187	29
$(M-3CI)^+$	136	43	152	50
$(M-CH_3)^+$	_	_	242	100
$(M-CH_3-Cl)^+$	_	_	207	0
$(M-CH_3-2Cl)^+$	_	_	172	17
$(M-CH_3-3CI)^+$	_		137	12
$(M-CH_3-CO)^+$	_	_	214	9.5
XC ₆ H₄N ⁺	105	100	121	60
XC ₆ H ₄ ⁺	91	22	107	7.1
C ₆ H₄N ⁺	90	6.7	90	19
Cl ₃ P ⁺	136	3.2	136	9.4
Cl_2P^+	101	11	101	43
ClP ⁺	66	6.0	66	18
Cl ₃ ^a		44.9		51.5
Cl ₂		11.5		16.0
Cl ₁		17.2		16.5
Clo		26.4		16.0

Ion current carried by ions containing

 ${}^{a} \operatorname{Cl}_{n} = \frac{P + n \operatorname{Cl}}{\text{Total ion current carried by all P-containing}} \times 100.$

and $C_6H_4CH_3-p$. When X = OH, the base peak of the spectrum is $(M-X)^+$, while for the other two species, the base peak is X⁺. No decomposition *via* Route A is observed, the principal fragmentations being *via* Route D: in the aromatic species prominent Route D ions are Cl_3PNSO^+ (RI = 58% of base peak for X = C_6H_5 and 92% for X = $C_6H_4CH_3$), isoelectronic with the neutral thionylimides R_3MNSO (M = C,Si). Loss of SO₂ is observed in the aromatic species as found also in sulphones⁵ and sulphonamides⁶, together with the ions XN⁺ = (M-Cl_3P-SO_2)⁺. A further Route D ion is Cl_3PN⁺, which breaks down primarily *via* Route A, in a similar manner to Cl_3PO⁺.

Compounds $Cl_3PNC_6H_4X$

The mass spectra of five compounds of this type have been determined: the spectra of those having X = p-CH₃ and p-CH₃O are set out in Table III, and of those with X = o-NO₂, m-NO₂ and p-NO₂ in Table IV. The spectrum of Cl₃PNC₆H₄CH₃ presents an interesting contrast with that of its sulphonyl analogue: Route A is now a major decomposition pathway, and the relative abundances of NC₆H₄CH₃⁺ and C₆H₄CH₃⁺ are essentially reversed in the two cases. Notional insertion of a single oxygen atom to yield Cl₃PNC₆H₄ OCH₃ again gives substantial decomposition of the molecular ion by Route A, but the base peak of the spectrum is now (M-CH₃)⁺ (structure I)

$$CI_{3} P = \stackrel{+}{N} = \swarrow = 0 \quad \longleftarrow \quad CI_{3} \stackrel{+}{P} = N = \swarrow = 0 \qquad (I)$$

from which further loss of CO occurs, to give an ion whose structure is possibly that of the P-pyrrolotrichlorophosphonium ion (II)

		$\mathbf{X} = o \cdot \mathbf{NO}_2$	$X = m - NO_2$	$X = p - NO_2$
	m/e	RI	RI	
M+	272	36	10	39
$(M-Cl)^+$	237	2.8	1.9	5.5
$(M-2Cl)^+$	202	0	0	0.8
$(M-3Cl)^+$	167	0	1.6	3.8
(M–O) ⁺	256	0.6	9.0	1.3
(M–NO) ⁺	242	1.6	0	14
$(M-NO_2)^+$	226	0.4	3.9	2.6
$(M-NO-CO)^+$	214	7.0	0.7	2.8
$(M-NO_2-Cl)^+$	191	1.4	1.6	2.5
$(M-NO_2-2CI)^+$	156	4.4	2.4	4.3
M–PCI) ⁺	206	11	0	0
$M-PCI-O)^+$	190	6.4	0	0
ONC6H₄N⁺	106	6.4	2.6	6.9
C ₆ H₄N⁺	90	100	100	100
OPCl ₃ ⁺	152	30	23	3.4
DPCl ₂ ⁺	117	24	24	10
OPCI ⁺	82	1.7	1.7	0.6
OP+	47	8.0	5.8	3.2
PCl ₃ ⁺	136	4.4	1.3	4.0
PCl_2^+	101	30	9.0	13
PCl ⁺	66	5.0	7.7	2.1
Cl ₃		45.8	46.0	59.4
		43.3	35.0	27.5
		6.4	11.8	6.9
Clo		4.5	7.1	6.2

Formation of the pyridinium cation, as observed in the mass spectrum of the parent *p*-methoxyaniline (*p*-anisidine)⁷, is precluded by the absence of mobile hydrogen atoms initially bound to nitrogen.

The spectra of the three nitro-substituted derivatives, $Cl_3PNC_6H_4NO_2$ are broadly similar, the base peak of each spectrum being $C_6H_4N^+$: decomposition occurs *via* routes A, B and D to roughly equal extents. Although the majority of the ions produced by Route D decompositions are analogous to ions observed in the spectra of the parent amines, it is of interest that the abundance of Cl_3PO^+ is highest in the *ortho* isomer, decreasing *ortho*>*meta*>*para*. Although unsupported by observation of a metastable peak, it is possible that this ion arises directly from the molecular ion: the "counter-ion" (M-Cl_3PO)⁺ is observed to a lesser extent in all three isomers.

A most unusual rearrangement, observed only in the *ortho* isomer, and supported by a metastable peak is the exstrusion of phosphorus from $(M-Cl)^+$ to give

(M–PCl)⁺ whose subsequent loss of oxygen is also metastable-supported:

$$({}^{35}\text{Cl})_2\text{PNC}_6\text{H}_4\text{NO}_2^+ \xrightarrow{\text{m.s. } 179.1} ({}^{35}\text{Cl})_2\text{NC}_6\text{H}_4,\text{NO}_2^+ \xrightarrow{\text{m.s. } 175.2} ({}^{35}\text{Cl})_2\text{NC}_6\text{H}_4\text{NO}^+$$

We note that in all these aromatic species, $(M-3Cl)^+$ ions, possibly having the quasi-ammonium structure III,

$$XC_6H_4-N\equiv P$$
 (III)

are very abundant if X is an electron source (CH₃ or CH₃O), but occur hardly at all if X is an electron sink (NO₂).

Finally, we find no evidence from these mass spectra to support the contention¹ that compounds Cl_3PNAr are dimeric, at least in the vapour phase.

Compounds Cl₃PNCOX

The reaction of PCl₅ with carboxylic acid amides to yield, ultimately, nitriles, has been long known, and

many intermediates have been suggested,⁸ including one in which a 1:1 complex is formed, followed by the elimination of Cl₃PO, followed by loss of HCl. We find that refluxing a mixture of benzamide and PCl₅ in carbon tetrachloride gives copious evolution of hydrogen chloride: the mass spectrum of the product remaining after removal of the solvent contains ions due, not only to Cl₃PO⁺, C₆H₅CN⁺ and their decomposition products but also the ion Cl₃PNCOC₆H₅⁺ and its decomposition products (Table V). Similarly in the spectrum of the product derived from PCl₅ and acetamide, the ions Cl_nPNCOCH₃⁺ (n = 1, 2 or 3) are observed.

TABLE V. Mass Spectrum of Cl₃PNCOC₆H₅.

Ion	m/e	RI
 M ⁺	255	0.7
$(M-Cl)^+$	220	21
$(M-2Cl)^+$	185	1.4
Cl ₃ PNC ⁺	162	0.4
Cl ₃ PO ⁺	150	17
Cl_2PO^+	117	67
CIPO ⁺	80	4.9
Cl ₃ P ⁺	136	0
Cl_2P^+	101	1.2
CIP ⁺	66	32
C ₆ H ₅ CN ⁺	103	100
$C_6H_4^+$	76	69

Compounds Cl_3PNR (R = alkyl)

For compounds in which the alkyl group is unbranched at the α -carbon, dimerisation to diazadiphosphetidines containing a four-membered NPNP ring occurs. When R is branched at the α -carbon, the compounds are monomeric, and the mass spectra of compounds having $R = (CH_3)_3C$, $CH_3(C_2H_5)CH$, and (CH₃)₂CH are summarised in Table VI. On the basis of n.m.r. spectroscopy, Gutmann and his colleagues concluded² that the compound having R =(CH₃)₂CH is dimeric: they quoted no numerical data, but based their conclusion on the number of lines observed for the unique CH resonance which they reported as nine. This number of lines is incomprehensible for either monomeric or dimeric (CH₃)₂CH NPCl₃. We find the unique CH resonance, in CCl₄ solution, to be a doublet of septets having $\delta = 3.83$ p.p.m., ${}^{3}J(HCNP) = 38$ Hz, ${}^{3}J(HCCH) = 7$ Hz. Both the splitting pattern, and the value of ${}^{3}J(HCNP)$ (usually ca. 29Hz in dimeric species,^{2,3} but 38Hz also⁹ in monomeric CH₃(C₂H₅)CHNPCl₃) confirm the conclusion drawn here from the mass spectrum that (CH₃)₂CHNPCl₃ is indeed monomeric.

The principal decomposition pathway for the molecular ions of these compounds is *via* Route D: surprisingly few common ions containing a C₃NP skeleton are observed, there being no $(M-2CI)^+$, $(M-3CI)^+$ or Cl_3PN^+ ions in any of the spectra. However in the spectra of the two butyl derivatives the doubly charged ions $(H_3C_2NPCl_3)^{+2}$, possibly having structure IV are observed (7.3% of base peak when $R = (CH_3)_3C$, and 1.0% when $R = CH_3(C_2H_5)CH$).

TABLE VI. Mass Spectra of Cl_3PNR (R = (CH₃)₃C, CH₃(C₂H₅)CH and (CH₃)₂CH).

Ion R =		(3)3C	$R = CH_3(C_2H_5)CH$		$\mathbf{R} = (\mathbf{CH}_3)_2 \mathbf{CH}$	
	m/e	RI	m/e	RI	m/e	RI
M+	207	2.7	207	3.0	193	0
$(M - CH_3)^+$	192	87	192	4.7	178	6.1
$(M - C_2 H_5)^+$	_	-	178	63	_	_
$(M-Cl)^+$	172	10	172	7.3	158	25
C ₃ H ₉ NPCl ₂ ⁺	160	0	160	100	160	0
C₄H ₉ +	57	36	57	16	_	_
$C_4H_8^+$	56	83	56	17	_	_
$C_2H_8N^+$	46	100	46	0	46	0
$C_{3}H_{7}^{+}$	43	0	43	0	43	34
$C_3H_6^+$	42	28	42	50	42	100
$C_3H_5^+$	41	39	41	41	41	52
$C_{3}H_{3}^{+}$	39	19	39	18	39	38
PCl ₃ ⁺	136	8.9	136	6.5	136	3.4
PCl ₂ ⁺	101	20	101	25	101	25
PCl ⁺	66	18	66	12	66	23

TABLE VII. Mass Spectrum of (Cl₃PN)₂SO₂.

-	(-)	
Ion	m/e	RI
O ₂ SN ₂ P ₂ Cl ₆ ⁺	364	0
$OSN_2P_2Cl_6^+$	348	3.4
$OSN_2P_2Cl_5^+$	313	6.9
ONP ₂ Cl ₅ ⁺	267	4.6
ONP ₂ Cl ₄ ⁺	232	92
ONP ₂ Cl ₃ ⁺	197	16
ONP ₂ Cl ₂ ⁺	162	34
ONP ₂ Cl ⁺	127	4.6
ONP ₂ ⁺	92	61
O ₂ SNPCl ₃ ⁺	214	68
O ₂ SNPCl ₂ ⁺	179	3.5
NP ₂ Cl ₂ ⁺	146	11
NP ₂ Cl ⁺	111	11
NPCl ⁺	76	23
NPCl ₃ ⁺	150	28
NPCl ₂ ⁺	115	17
NPCl ⁺	80	86
PCl ₃ ⁺	136	9.2
PCl ₂ ⁺	101	100
PC1 ⁺	66	91

$$H_{3}C-C \equiv \overset{+}{N}-\overset{+}{P}Cl_{3} \leftrightarrow H_{3}C-\overset{+}{C}=N-\overset{+}{P}Cl_{3}$$
(IV)

When $R = (CH_3)_3C$ and $(CH_3)_2CH$, the base peak of the spectrum is a decomposition product of RN: when $R = CH_3(C_2H_5)CH$, however, the base peak of the spectrum has composition $C_3H_9NPCl_2^+$. This ion is most plausibly assigned structure V, the adduct of a propylamine with PCl_2^+ .

$$C_{3}H_{7}-NH_{2}-PCI_{2}$$
 (V)

Although the formation of $C_nH_{2n+3}N^+$ ions is common¹⁰ in the mass spectra of uncomplexed amines, these ions are usually of fairly low abundance.

 $(Cl_3PN)_2SO_2$

This compound is the derivative of sulphamide, and its mass spectrum is set out in Table VII. The molecular ion is absent from the spectrum, the two heaviest ions being $OSN_2P_2Cl_6^+$ (M-O)⁺ and $OSN_2P_2Cl_5^+$ (M-O-Cl)⁺: no further ions of the series $OSN_2P_2Cl_n^+$ are observed. In the series $ONP_2Cl_n^+$, all ions except that having n = 6 are observed. Further partial series of ions are $O_2SNPCl_n^+$ (n = 3 and 2), $NP_2Cl_n^+$ (n = 2, 1, 0), and $NPCl_n^+$ (n = 3, 2, 1), in addition to PCl_n^+ (n = 3, 2, 1). Surprisingly no doubly charged ions are observed. The base pcak of the spectrum is PCl_2^+ , and the next most abundant ion is $ONP_2Cl_4^+$, possibly having structure VI, that of the bis(dichlorophosphino)nitroxyl cation,

$(Cl_3PN)_2CO$

 $(Cl_3PN)_2CO$ is derived from the reaction of phosphorus pentachloride and urea, and its mass spectrum is presented in Table VIII. Just as the spectrum of $(Cl_3PN)_2SO_2$ is dominated by the series $ONP_2Cl_n^+$, initiated by loss of NSO so the spectrum of $(Cl_3PN)_2$ CO is dominated by an ion series initiated by loss of CO, $N_2P_2Cl_n^+$. The most prominent ions are those of the series $OPCl_n^+$, probably arising by the fragmentation

$$Cl_3PNCONPCl_3^+ \rightarrow Cl_3PNCN + OPCl_3^+$$

followed by loss of successive chloride atoms. This would be analogous to the process found in the species Cl_3PNCOR^3 and Cl_3PNCOR^+ . The ion $CN_2PCl_3^+$ may have structure VII, arising from the process

$$Cl_{3}PNCONPCl_{3}^{+} \rightarrow Cl_{3}PO + CN_{2}PCl_{3}^{+}$$
$$Cl_{3}PNCN^{+}$$
(VII)

Hexachlorodiazadiphosphetidines, (Cl₃PNR)₂

The mass spectra of five N,N-dialkyldiazadiphosphetidines have been recorded, for compounds having $R = CH_3$, C_2H_5 , $n-C_3H_7$, $n-C_4H_9$ and $C_6H_5CH_2$. As with other compounds containing two Cl₃PN groups, the ions in the mass spectra can be grouped, according

TABLE VIII. Mass Spectrum of (Cl₃PN)₂CO.

Ion	m/e	RI
OCN ₂ P ₂ Cl ₆ ⁺	328	4.3
$OCN_2P_2Cl_5^+$	293	2.3
$N_2P_2Cl_6^+$	300	2.6
$N_2P_2Cl_5^+$	265	2.8
$N_2P_2Cl_4^+$	230	25
$N_2P_2Cl_3^+$	195	1.8
$N_2P_2Cl_2^+$	160	1.4
CN ₂ PCl ₃ ⁺	174	1.1
$NP_2Cl_3^+$	181	1.7
NP ₂ Cl ₂ ⁺	146	1.5
OPCl ₃ ⁺	152	49
OPCl ₂ ⁺	117	100
OPCI ⁺	82	9.2
OP ⁺	47	47
PCl ₃ ⁺	136	14
PCl ₂ ⁺	101	49
PCI ⁺	66	18

Series	$R = CH_3$	C_2H_5	$n-C_3H_7$	n-C ₄ H ₉	$C_6H_5CH_2$
$(RN)_2P_2Cl_n^+$	+	+	+	+	+
$(RN)P_2NCl_n^+$		-	+		+
$(RN)P_2Cl_n^+$	_	+	-	_	_
$P_2N_2Cl_n^+$	-	-	-	-	+
$P_2 NCl_n^+$	+	-	+	+	+
$(\bar{R}N)_2 \bar{P}Cl_n^+$	+	_		_	_
(RN)PCl ⁺	+	+	+	+	+
PN₂Ćl _n +	+	+	+	+	_

TABLE IX. Ion Series Occurring in the Mass Spectra of (Cl₃PNR)₂.

to the number of R groups, and of N or P atoms, into series, the members of an ion series differing only in their numbers of Cl atoms. The ions series represented in the spectra of the compounds studied are set out in Table IX. Some ion series occur in all the compounds studied, others in only one or two: no obvious pattern can be discerned.

TABLE X. Mass Spectrum of $(Cl_3PNCH_2C_6H_5)_2$.

Series	Ion	m/e	RI
	$R_2N_2P_2Cl_6^+$	482	0
	$R_2N_2P_2Cl_5^+$	447	4.7
	$R_2N_2P_2Cl_4^+$	412	0.2
$(RN)_2P_2Cl_n^+$	$R_2N_2P_2Cl_3^+$	377	3.9
	$R_2N_2P_2Cl_2^+$	342	1.0
	$R_2N_2P_2Cl^+$	307	1.0
	$R_2N_2P_2^+$	272	0
	$RN_2P_2Cl_6^+$	391	0
	RN ₂ P ₂ Cl ₅ ⁺	356	1.6
	$RN_2P_2Cl_4^+$	321	1.2
$(RN)P_2NCl_n^+$	$RN_2P_2Cl_3^+$	286	0
	$RN_2P_2Cl_2^+$	251	2.9
	$RN_2P_2C1^+$	216	0
	$RN_2P_2^+$	181	3.6
$P_2N_2Cl_n^+$	$N_2P_2Cl_3^+$	195	5.3
P ₂ NCl _n ⁺	NP ₂ Cl ₄ ⁺	216	2.7
	RNPCl₃ ⁺	241	1.1
(RN)PCl _n ⁺	RNPCl ₂ ⁺	206	3.1
(RN) CIn	RNPC1 ⁺	171	0
	RNP ⁺	136	2.3
	PCl ₃ ⁺	136	2.8
	PCl_2^+	101	8.5
	C7H6NPCl3 ⁺	240	2.2
	C7H6NPC1 ⁺	170	3.3
	$C_7H_7Cl^+$	126	89
	$C_7H_7N^+$	105	13
	$C_{7}H_{7}^{+}$	91	100

As an example, the spectrum of the benzyl species is given in full in Table X. The base peak of the spectrum is the ion $C_7H_7^+$ which presumably takes the usual tropylium form¹¹; the next most intense is the $C_7H_7Cl^+$ ion, the molecular ion of benzyl chloride. The sample was shown to be free of benzyl chloride before introduction into the mass spectrometer, and although (Cl₃PNCl₂C₆H₅)₂ readily forms C₆H₅CH₂Cl, $(NPCl_2)_3$ and $(NPCl_2)_4$ on heating³, the formation of the benzyl chloride by pyrolysis in the sample chamber is felt to be unlikely, since the spectrum shows no evidence whatever for the ions $N_4P_4Cl_8^+$, $N_3P_3Cl_6^+$ or their decomposition products. Consequently the ion $C_7H_7Cl^+$ is regarded as a genuine decomposition product of an ion of higher mass number, although there are no metastable peaks in the spectrum which allow the identification of the process giving rise to $C_{7}H_{7}Cl^{+}$. A plausible metastable at 65.9 corresponding to

 $C_7H_7NPCl_3^+ \rightarrow C_7H_7Cl^+ + NPCl_2$

is overlain by the strong metastable at 65.7 corresponding to

 $C_7H_7Cl^+ \rightarrow C_7H_7^+ + Cl$

Five of the ion series mentioned in Table IX are represented in this spectrum, and it is noteworthy that the even-electron ions are generally much more abundant than the odd-electron ions. Ions of the form $X_3N_2P_2^+$, such as $R_2N_2P_2Cl^+$, $RN_2P_2Cl_2^+$ and $N_2P_2Cl_3^+$ may be regarded as eight valence-electron polyhedra, and so most probably¹² have tetrahedral N_2P_2 cages, while ions of the form $XN_2P_2^+$, such as RN_2P_2 , are ten valence-electron polyhedra and so have square planar N_2P_2 fragments.

Compositionally analogous to the foregoing N,Ndialkyldiazadiphosphetidines, and presumably having a structure based on the same square planar (NP)₂ ring¹³ is the N,N-dimethoxy compound (Cl₃PNOCH₃)₂, obtained from the reaction of O-methylhydroxylammonium chloride with PCl₅: its mass spectrum is summarised in Table XI. The molecular ion is absent from the spectrum (this is also found to be so in the analogous (Cl₃PNCH₃)₂): the two heaviest ions observed

TABLE XI. Mass Spectrum of (Cl₃PNOCH₃)₂.

Ion	m/e	RI
$(CH_3O)_2N_2P_2Cl_6^+$	362	0
$(CH_{3}O)ON_{2}P_{2}Cl_{6}^{+}$	347	0.3
$(CH_3O)ON_2P_2Cl_5^+$	312	1.5
ONP ₂ Cl ₅ ⁺	267	10
ONP ₂ Cl ₄ ⁺	232	100
ONP ₂ Cl ₃ ⁺	197	10
ONP ₂ Cl ₂ ⁺	162	13
ONP ₂ Cl ⁺	127	1.5
ONP ₂ ⁺	92	8.5
NP ₂ Cl ₃ ⁺	181	0.4
$NP_2Cl_2^+$	146	1.8
NP ₂ Cl ⁺	111	1.0
NP ₂ ⁺	76	1.6
NPCl3 ⁺	150	3.4
NPCl ₂ ⁺	115	0.8
NPCI ⁺	80	8.3
NP ⁺	65	0
PCl ₃ +	136	3.8
PCl ₂ ⁺	101	20
PCl ⁺	66	8.0

are $(M-CH_3)^+$ and $(M-CH_3-Cl)^+$, and there are no other ions containing methyl groups. With the exception of $(M-CH_3)^+$ and $(M-CH_3-Cl)^+$, the spectrum is very similar to that of $(Cl_3PN)_2SO_2$, both spectra showing strong ion series $ONP_2Cl_n^+$, $NP_2Cl_n^+$, $NPCl_n^+$ and PCl_n^+ . The base peak is $ONP_2Cl_4^+$ (structure VI) and in fact the series $ONP_2Cl_n^+$ carries some 74% of the total ion current (*ca.* 32% in $(Cl_3PN)_2SO_2$). The high abundance of $ONP_2Cl_4^+$ suggests that this ion, which if it adopts structure VI will undoubtedly be planar at nitrogen,¹⁴ may be sufficiently stable under ordinary chemical conditions to permit its isolation: this point is currently under investigation.

References

- For leading references see: (a) M. Bermann, in "Topics in Phosphorus Chemistry", E.J. Griffith and M. Grayson, eds., Interscience, New York, 7, 311 (1972); (b) H.J. Bestman and R. Zimmerman, in "Organic Phosphorus Compounds", G.M. Kosolapoff and L. Maier, eds., Interscience, New York, 3, 1 (1972); (c) E. Fluck and W. Haubold, *ibid.*, 6, 579 (1973).
- 2 V. Gutmann, K. Utvary and M. Bermann, *Monatsch. Chem.*, 97, 1745 (1966).
- 3 C. Glidewell, Angew Chem., in press.
- 4 A.V. Kirsanov, Zh. Obshch. Khim., 22, 88 (1952).
- 5 R.J. Soothill and L.R. Williams, Org. Mass. Spectrom., 6, 141 (1972).
- 6 M.F. Grostic, R.J. Wnuk and F.A. MacKellar, J. Am. Chem. Soc., 88, 4664 (1966).
- 7 G. Spiteller and M. Spiteller-Friedman, Monatsh. Chem., 93, 1395 (1962).
- 8 B.C. Challis and J.A. Challis in "The Chemistry of Amides", J. Zabicky ed., Interscience, New York (1970).
- 9 C. Glidewell, unpublished data.
- R.S. Gohlke and F.W. McLafferty, Anal. Chem., 34, 1281 (1962).
 S. Meyerson and P.N. Rylander, J. Chem. Phys., 27, 901
- (1957).
- 12 C. Glidewell, Inorg. Nuclear Chem. Letters, 11, 761 (1975).
- 13 L.G. Hoard and R.A. Jacobson, J. Chem. Soc. A, 1203 (1966).
- 14 C. Glidewell, Inorg. Chim. Acta, 12, 219 (1975).