# **Steric Effects in Pyrrole-based Mixed Complex Systems**

B. S. RAGHAVENDRA, S. GUPTA, R. H. BALUNDGI and A. CHAKRAVORTY *Department of Chemistry, Indian Institute of Technology, Kanpur-208016, India*  Received November 18. 1975

*New systems of the type M(pyrenNRz)Br, M(pyrtn*   $NR_2\beta r$  ( $M = Cu, Ni$ ),  $M(pyr)(pyrenNR_2)$  ( $M = Cu$ , *Ni), Cu(pyr)(pyrtnNR,) (where Hpyr is pyrrole-2 aldehyde, pyrenNR, is Schiff base* of pyr *and NR,CH,*   $CH<sub>2</sub>NH<sub>2</sub>$  and pyrtn $NR<sub>2</sub>$  is Schiff base of pyr and  $NR<sub>2</sub>CH<sub>2</sub>$ *CH2CH2NH2) are reported. The first two systems are shown to have planar geometry in which pyrenNR, and pyrtnNR, act as tridentate ligands. On the basis of magnetic, spectral and X-ray powder diffraction studies on pure crystals and on solid solutions of nickel(II) and copper(H) species, it is concluded that M(pyr)(pyren NR,) has a I-coordinate grossly planar geometry in*  which the  $NR_2$  group of pyren $NR_2$  fails to occupy a *coordination position due to steric reasons. Models demonstrate that this steric difficulty should considerably decrease on replacement of pyrenNR, by pyrtnNR,. Indeed the species*  $Cu(pyr)(pyrtnNR_2)$  *have electronic spectra strongly suggestive of pentacoordination.* 

#### **Introduction**

In previous works<sup> $1-9$ </sup> from this laboratory the stereochemistry of metal $(II)$  complexes of composition MLL'  $(L = \text{bidentate} \text{ and } L' = \text{tridentate})$  were reported. The structural situations met so far are: monomeric  $M L'$  with  $3-5$ ,  $7-9$  square pyramidal M, dimeric  $M_2L_2L'_2$  with<sup>1,2,6</sup> octahedral or square pyramidal M. Interesting cases of solution equilibria have been thermodynamically characterized<sup> $7-9$ </sup>. In the present work we report, among other things, the new situation where a monomeric MLL' is unable to achieve pentacoordination due to steric crowding. It is also shown how this inability is readily removed by a minor change in the structure of L'. The pyrrole based ligand systems concerning us here are I and II. The general abbreviation for the systems of the type II will be T. The following specific abbreviations will also be used:  $I = pyr$ ;  $II(n = 2) = pyrenNR_2$ ;  $II(n = 3) = pyrtnNR_2$ .



### **Results and Discussion**

#### *System MTBr*

Both copper(I1) and nickel(I1) species of this type are readily obtained as dark coloured shining crystals by the reaction

$$
MBr_4^{2-} + T \rightarrow MTBr + 3Br^{-}
$$

carried out in dry tetrahydrofuran. Characterization data are set out in Table I. Results of physical measurements are displayed in Table II. NiTBr is diamagnetic while CuTBr has the normal magnetic moment of  $\sim$  1.8 BM. Electrical conductivity data show that the complexes remain mostly undissociated in nitromethane solution. The observed results (Table II) suggest the planar structure III. Analogous systems derived from other tridentate systems are reported in literature<sup>4, 10-14</sup>. The important point to note here is that *both the ligand systems pyrenNR, and pyrtnNR, act in the tridentate fashion.* 



## *System Cu(pyr)(pyrenNRJ*

The system IV is readily obtained<sup>15</sup> by reacting I with  $RNH<sub>2</sub>$  in presence of copper(II) salts in aqueous medium. However when  $R_2NCH_2CH_2NH_2$  is used as the primary amine, the complex coresponding to IV is *not* obtained. Instead green crystals of composition  $Cu(pyr)(pyrenNR<sub>2</sub>)$  result. The same substance is also obtained by reacting  $Cu(pyr)_2^{16}$  with one mol of  $R<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>$  in boiling toulene. Characterization data for  $Cu(pyr)(pyrenNR<sub>2</sub>)$  is set out in Table I. Cu  $(pyr)_2$  shows the C=O stretch at 1650 cm<sup>-1</sup> while CuTBr has the C=N stretch at  $\sim$  1600 cm<sup>-1</sup>. As expected the mixed ligand complexes show both  $C=O$  and  $C=N$ stretches (Table III). They have normal magnetic moments (Table III). Cu(pyr)(pyrenNEt<sub>2</sub>) was found to be monomolecular in freezing benzene (Mol. Wt., Found 362, calcd., 350). The complexes could be either



# TABLE I. Characterization Data.

<sup>a</sup> All melting points are uncorrected. <sup>b</sup> Copper was estimated as CuSCN and nickel as dimethylglyoximate.

TABLE II. Conductivity, Magnetic Moment and Spectroscopic Data for MTBr.

| Compound                     | $\Lambda^{\mathbf{a}}$<br>$\text{6}$ hm <sup>-1</sup> cm <sup>2</sup><br>$\text{mol}^{-1}$ ) | $\mu_{eff}$ of Solid<br>(BM) | Electronic Spectra <sup>b</sup> |                        | $C=N$                    |
|------------------------------|----------------------------------------------------------------------------------------------|------------------------------|---------------------------------|------------------------|--------------------------|
|                              |                                                                                              |                              | Nujol mull                      | Toluene                | Stretch<br>$(cm^{-1})^c$ |
| Cu(pyrenNEt <sub>2</sub> )Br | 15.2                                                                                         | 1.80                         | 620, 520sh, 410                 | 650(168)<br>500sh(153) | 1590                     |
| Cu(pyrtnNMe <sub>2</sub> )Br | 33.6                                                                                         | 1.84                         | 650, 530sh, 415                 | 655(135)               | 1610                     |
| Ni(pyrenNMe <sub>2</sub> )Br | 14.9                                                                                         | Diamagnetic                  | 620sh.425                       | 580sh(178)             | 1585                     |
| Ni(pyrenNEt <sub>2</sub> )Br | 18.9                                                                                         | Diamagnetic                  | 620sh.410                       | 580sh(166)             | 1590                     |
| Ni(pyrenNHEt)Br <sup>d</sup> |                                                                                              | Diamagnetic                  |                                 |                        | 1600                     |

<sup>a</sup> Conductivity measurements were done in  $\sim 10^{-3} M$  nitromethane solution at 311° K. <sup>b</sup> Band maxima are in nm; figures in parentheses refer to extinction coefficients in 1 mol<sup>-1</sup> cm<sup>-1</sup>; sh is shoulder. <sup>c</sup> Measurements were made in KBr disc or in nujol mull.  $dA$  band at 3240 cm<sup>-1</sup> is assigned as N-H stretch.





<sup>a</sup> Band maxima are in nm; figures in parentheses refer to extinction coefficients in 1 mol<sup>-1</sup> cm<sup>-1</sup>. <sup>b</sup> Infrared stretching frequencies were measured in KBr disc or in nujol mull. 'NH stretch at 32 10 cm-'.

pentacoordinated belonging to the class' M(bidentate) Ligand field spectra throw some light on this pro metal or tetracoordinated and planar with bidentate rise to two bands in the visible region<sup>17, 18</sup>. Cu(pyr) pyrenNR<sub>2</sub> as in V (NR<sub>2</sub> group is not coordinated to the (pyrenNR<sub>2</sub>) shows only one broad band at ~600 nm metal).  $(Table III, Fig. 1)$ . The complex  $Cu(pyr)_2$  having the

 $(\text{dequate})$  with all potential donor sites bound to the blem. Usually pentacoordinated copper(H) species give tal or tetracoordinated and planar with bidentate rise to two bands in the visible region<sup>17, 18</sup> Cu(pyr)



 $\mu$  c  $\alpha$ , Eiganu heiu specu a or the complexes. Cu(pyr)(pyrence.)

 $CuN<sub>2</sub>O<sub>2</sub>$  chromophore shows a single broad ligand field transition centred at 650 nm. On the other hand IV with  $CuN<sub>4</sub>$  coordination sphere shows<sup>15</sup> the corresponding transition around 550 nm. The structural type  $\sigma$  and  $\sigma$  and  $\sigma$  and  $\sigma$  and may be expected and may be expected and may be expected as  $\sigma$ thas curve coordination splicte and may be expected  $\epsilon$  is to a ngang new value in the intermediate  $m_{\epsilon}$ ,  $\sigma_{\epsilon}$ ,  $\sigma_{\epsilon}$ 

#### *Mixed Crystals*

More definitive evidence in favour of structure V is  $\frac{1}{2}$  of  $\frac{1}{2}$  or  $\frac{1}{2}$  or obtained from studies on mixed crystals of  $Cu(pyr)$ . (pyren $NMe<sub>2</sub>$ ) and  $Ni(pyr)(pyren NMe<sub>2</sub>)$ . The pure nickel(II) complex is brown and diamagnetic with an electronic band at 410 nm. Obviously it belongs to the structural type V.  $R_2 = R_2 - R_1$ 

 $\alpha$ -Kay powder patiering were taken on the pure copper(II) and nickel(II) complexes. These are not isomorphous with each other (Table IV). However mixed crystals of the two complexes containing more than 50%  $Cu(pyr)(pyrenNMe<sub>2</sub>)$  could be readily grown from benzene. These mixed crystals (Table IV) (i) are isomorphous with pure  $Cu(pyr)(pyrenNMe<sub>2</sub>)$ , (ii) have all the nickel(II) in diamagnetic state, while copper(II) has normal magnetic moment, (iii) have

TABLE IV. Selected *d* Spacings (Å).<sup>a</sup>

ligand field spectra which can be qualitatively analysed and the despectra which can be quantatively analysed  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$ . In  $\frac{1}{2}$  $\sum_{i=1}^{\infty}$  and  $\sum_{i=1}^{\infty}$  if  $\sum_{i=1}^{\infty}$  in the mixed mixed.  $\frac{1}{2}$  can plan a planar environment of the planar environment of the conservation of the conserva crystals is in a planar environment of type V. Consequently copper $(II)$  also has the same environment in  $\frac{1}{2}$  copper  $\frac{1}{2}$  also has the same environment in  $m_{\text{max}}$  crystal. In light of the observation (i), this means that the pure  $\text{Cu(pyr)}(\text{pyrenNMe}_2)$  also has copper(II) in the planar environment V.

#### *Steric Effects*

It is firmly established<sup>4,5</sup> that  $Cu(sal)(salenNR<sub>2</sub>)$  $\frac{1}{2}$  is the stablished that  $\frac{1}{2}$  (salenting)  $1, 5a1, 111, 1$ 



 $m_{\text{max}}$  or this and in view of the observation that in MTBr pyrenNR, is tridentate, it is pertinent to examine why pyren $NR_2$  fails to use  $NR_2$  coordination in M(pyr). (pyren $NR_2$ ). We strongly suspect that the phenomenon is of steric origin. Like salen $NR<sub>2</sub>$  in VIII and other structures<sup>19</sup>, pyrenNR<sub>2</sub> in its tridentate mode will be able to span only in the meridional fashion due to the short length of the  $-(CH<sub>2</sub>)<sub>2</sub>$  - chain. Models show that this brings the bidentate pyr moiety unfavourably close to the methyl groups of NMe<sub>2</sub> in pyrenNMe<sub>2</sub> in the *hypothetical* square pyramidal structure IX.



We strongly suspect that this step that this step that the this step that the step that the step that the step to the deling of the delinion of the metal and the metal atom. In VIII, we have the metal atom. In VIII, we have to the delinking of NMe<sub>2</sub> from the metal atom. In VIII, the benzene ring of sal is situated one bond  $(O-C)$ away from the corner of the basal plane and also the chelate ring is six-membered. Models clearly demonstrate that steric interaction between sal and  $NR_2$  is virtually absent. If the above the steric effect in the step in the step

 $\mu$  and  $\mu$  is the complexes correct the complexes  $\mu$ 



a The first eight reflections with 20 in the range  $\sim$  10-2  $\mu$  are reported. B  $\mu$  and 44  $\mu$  and 44  $\mu$  and 44  $\mu$  $\sum_{n=1}^{\infty}$  are reported. Contains  $\sum_{n=1}^{\infty}$  of copyright  $\sum_{n=1}^{\infty}$  is diamagnetic.

(pyrtnNR<sub>2</sub>) with a more flexible  $-(CH<sub>2</sub>)<sub>3</sub>$  chain may be pentacoordinated. In this the potentially tridentate ligand can span facially. Models show that the configuration X is free from steric strain.

### *System Cu(pyr)(pyrtnNR,)*

With the above ideas in mind these complexes were synthesised by using methods analogous to those used for  $Cu(pyr)(pyrenNR<sub>2</sub>)$ . The complex  $Cu(pyr)(pyrtn)$  $NEt<sub>2</sub>$ ) was found to be monomolecular in freezing benzene (Mol. Wt., Found, 369; calcd, 364). They have normal magnetic moments (Table III). The electronic spectra of these complexes in benzene solution are quite different from those of  $Cu(pyr)(pyrenNR<sub>2</sub>)$ with two distinct bands in the visible region (Fig. 1). The spectra strongly suggest pentacoordination. Interestingly, the spectrum of  $Cu(pyr)(pyrtnNMe<sub>2</sub>)$  in the *solid state* (one band at 565 nm) is very different from that in solution but is closely akin to the spectrum of  $Cu(pyr)(pyrenNR<sub>2</sub>)$  (Table III). The former complex thus provides an important link being planar in the solid state and pentacoordinated in solution.

### **Experimental**

### *Preparation of the Compounds*

Pyrrole-2-aldehyde was synthesised $^{20}$  from pyrrole. The appropriate amine (0.01 mol) and pyrrole-2 aldehyde (0.01 mol) were taken in 20 ml ethanol and refluxed for 0.5 hr. Alcohol was then stripped using a rotary evaporator. The resulting Schiff base (brown liquid) was used without further purification.

#### *MTBr*

The Schiff base (0.01 mol) was taken in 40 ml dry tetrahydrofuran. To this was added potassium t-butoxide  $(0.01 \text{ mol})$  followed by  $(Et_4N)_2MBr_4$   $(0.01$ mol). The mixture was magnetically stirred for about 6 hr. During this period the solution became dark brown ( $M = Ni$ ) or dark green ( $M = Cu$ ). This was filtered and the residue was extracted several times with toluene. The toluene extract on concentrating gave dark coloured crystals. These were recrystallised form toluene. The yield was 50%

 $\binom{\mu}{\mu}$  Excess of the approximate amine was added to the aminometric was added to the  $\frac{1}{\mu}$  $(0.02 \text{ m})$  of pyrrole-2-aldehyde and 0.01 mol of 0.02 mol of pyrrole-2-aldehyde and 0.01 mol of  $CuSO<sub>4</sub> \cdot SH<sub>2</sub>O$  dissolved in 50 ml water. The solution was heated on a steam bath and was then cooled. About 2 ml of 5% NaOH solution was added. In the case of  $Cu(pyr)(pyrenNMe<sub>2</sub>)$  the precipitated material was filtered and then extracted with ethanol-dichloromethane mixture. The extract was concentrated and cooled. Dark green crystals thus obtained were recrystallised from dichloromethane. In the case of Cu

# *260 B. S. Raghavendra, S. Gupta, R. H. Balundgi and A. Chakravorty*

*(pyr)(pyrenNEt,),* a green gummy substance deposited. The aqueous portion was removed by decantation. The residue was dissolved in benzene and dried over anhydrous sodium sulphate. The solution was then concentrated and hexane was added. A gum separated which on standing for several days in air slowly transformed into microcrystals of the required complex. They were collected by filtration and washed with hexane. The yield was  $35\%$ .

(ii)  $0.02 \text{ mol of } Cu(pyr)_2^{16}$  and  $0.02 \text{ mol of the}$ appropriate amine were taken in 40 ml toluene and the mixture was heated to reflux for 1 hr. This was filtered and the volume of the filtrate was reduced to 10 ml. 10 ml of hexane was added. Green crystals separated on cooling. These were collected and recrystallised from tolucne-hexane mixture.

 $T_{\text{m}}(pyr)/(pyr)$  and  $T_{\text{m}}(pyr)$  to those similar to the similar to the similar to the similar to th  $\frac{1}{2}$   $\frac{1}{2}$ . Cu(p)(purence  $\frac{1}{2}$ .

### $Ni(pyr)(pyrenNMe<sub>2</sub>)$

A nonaqueous chelation reaction [pyrrole-2-aldehyde  $(0.01 \text{ mol})$ , pyrenNMe<sub>2</sub>  $(0.01 \text{ mol})$ , potassium t-butoxide (0.02 mol) and  $(E_t N)$ , $NiBr_4$  (0.01 mol] in tetrahydrofuran using a procedure entirely analogous to that used for MTBr gave dark brown crystals of composition Ni(pyr)(pyrenNMe<sub>2</sub>). The yield was  $50\%$ .

#### *Physical Measurements*

Magnetic moments were measured using a sensitive Gouy balance described elsewhere<sup>21</sup>. Infrared spectra were recorded on a Perkin-Elmer 521 recording spectrophotometcr. Molecular weight was determined cry- $\frac{1}{2}$ ophotometer. Molecular weight was determined cryscopically in purificulty believing. Electronic speca were studied on a cary model in recording spec ophotometer. Electrical conductivity incasufements were done in nitromethane solution using Systronics (India) conductivity bridge. Powder pattern data were collected on a GE XRD-6 diffractometer with CuKa radiation.

# **Acknowledgments**

Financial assistance provided by the Department of *Atomicial assistance provided by the Department of* Atomic Energy, Government of India. is gratefully acknowledged.

### **References**

- 1 T.S. Kannan and A. Chakravorty, *Inorg. Nucl. Chem. Letfers, 6, 903* (1970).  $L_{\text{EHEIS}}$ ,  $0, 703$  (1770).
- *Chim. Acta, 7, 25* 1 (1973). **Chim. Atta,** *1*, 231 (1973).
- *Letters, 9, 167 (1973).*

# *Pyrrole-based Mixed Complexes 261*

- *4* R.H. Balundgi and A. Chakravorty, *Inorg. Chem., 12, 981(1973).*
- *5* R. Tewari, R. C. Srivastava, R. H. Balundgi and A. Chakravorty, Inorg. Nucl. *Chem. Letters, 9, 583 (1973).*
- *6* R.H. Balundgi and A. Chakravorty, *Inorg. Nucl.* Chem. Letters, 9, 1045 (1973).
- 7 R. H. Balundgi and A. Chakravorty, *Inorg. Chim. Actu, 8, 261 (1974).*
- *8 S.* Gupta and A. Chakravorty, Inorg. *Chim. Acta, 24,* 151 (1975).
- 9 Rajendra P. Singh, S. Gupta and A. Chakravorty, *Indian J.* Chem., 13, 827 (1975).
- 10 L. Sacconi and I. Bertini, *Inorg. Chem.*, 5, 1520 (1966).
- 11 W.E. Hatfield and E.L. Bunger, Inorg. *Chem., 8,* 1194 (1969).
- 12 J. Drummond and J.S. Wood, *J. Chem. Sot. Dalton, 365 (1972).*
- *13* T.I. Benzer, L. Dann, C.R. Schwitzgebel, M.D. Tamburro and E.P. Dudek, *Inorg. Chem., 10*, 2204 (1971).
- 14 G.O. Dudek and E.P. Dudek, *Inorg. Chim. Acta, 8, 219 (1974).*
- *15* A. Chakravorty and T.S. Kannan, *J. Inorg. Nucl.* Chem., 29, 1691 (1967).
- 16 C.L. Perry and J. Weber, *J. Inorg. Nucl. Chem, 33, 1031 (1971).*
- *17* B. J. Hathaway and D.E. Billing, *Coord.* Chem. Rev., 5, 143 (1970).
- 18 M. Ciampolini, *Structure and Bonding, 6, 52 (1969).*
- *19* P.C. Chieh and G.S. Palenik, Inorg. *Chem., II, 816 (1972);* L. Sacconi, P.L. Orioli and M. Di Vaira, *J. Am. Chem. Sot., 87, 2059 (1965);* P.L. Orioli, M. Di Vaira and L. Sacconi, *J. Am. Chem. Sot., 88, 4385 (1966).*
- *20 Organic Synthesis, Collective volume No. IV,* p. 831 (1963).
- 21 T.S. Kannan and A. Chakravorty, Inorg. *Chem.,* 9, 1153 (1970).
- 22 H.M. Roberts and C.R. Bury, *J. Chem. Sot., 123,* 1237 (1923).