Sulphur–Nitrogen Compounds. Part IV^a. Reactions of Bis(tolylsulphonyl)hydroxylamine with Bases

J. D. BIRCHALL and C. GLIDEWELL

Chemistry Department, University of St. Andrews, Scotland, U.K.

Received September 14, 1977

The oxidation of N,N-bis(arylsulphonyl)hydroxylamines, HON(SO₂R)₂ (R = p-XC₆H₄; X = H, F, Cl, CH₃, CH₃O) yields nitrate(V) and N,N,O-tris(arylsulphonyl)hydroxylamines RSO₂ON(SO₂R)₂ [1]: the postulated course of this oxidation reaction is *via* the bis(arylsulphonyl)aminyl oxide radicals 'ON(SO₂R)₂ which dissociate according to eqn. 1, subsequent cross-combination of the radicals 'ON-(SO₂R)₂ and RSO₂ yielding the observed products.

$$^{\circ}ON(SO_{2}R)_{2} \longrightarrow ONSO_{2}R + RSO_{2}^{\circ}$$
(1)

A number of reactions designed to yield nitrosyl arenesulphinates $ONSO_2R$ gave a wide range of products [2], but never $ONSO_2R$. Oxidation of the N-aryl-N-(arylsulphonyl)hydroxylamines, $HON(SO_2R)R'$ $(R,R' = p-ClC_6H_4, p-CH_3C_6H_4, p-CH_3OC_6H_4)$ similarly yields analogous N,N,O-trisubstituted hydroxylamines $RSO_2ON(SO_2R)R'$ [3] via radicals 'ON- $(SO_2R)R'$ which dissociate to ONR' and RSO_2° (eqn. 2).

$$^{\circ}ON(SO_2R)R' \longrightarrow ONR' + RSO_2^{\circ}$$
(2)

^aPart III: J. D. Birchall and C. Glidewell, *Inorg. Chim. Acta*, submitted for publication.

The radicals $ON(SO_2R)_2$ and $ON(SO_2R)R'$, but not RSO₂, have been identified in these reactions, by use of e.s.r. spectroscopy [3].

The action of bases on HON(SO_2R)R' yields ONR' and arenesulphinate [4] (eqn. 3), in a process analogous to reaction (2) but at an oxidation level lower by one electron per mol.

$$HON(SO_2R)R' \xrightarrow{-H^*} -ON(SO_2R)R' \longrightarrow ONR' + RSO_2^- (3)$$

Consequently we have investigated the reactions of $HON(SO_2R)_2$ ($R = p-CH_3C_6H_4$ hereafter) with base in the hope of preparing $ONSO_2R$ in a reaction (eqn. 4) analogous to reaction (1) but at a lower oxidation level, again by one electron per mol.

$$HON(SO_2R)_2 \xrightarrow{-H^-} {}^{-}ON(SO_2R)_2 \xrightarrow{-} ONSO_2R + RSO_2^-$$
(4)

With aqueous bases, $HON(SO_2R)_2$ yields $RSO_2^$ and nitrate(III), (eqn. 5): this reaction is the reverse of that employed [1] to prepare $HON(SO_2R)_2$ under acid conditions.

$$HON(SO_2R)_2 + 3OH^- \longrightarrow 2RSO_2^- + NO_2^- + 2H_2O$$
(5)

With anhydrous solid KOH in toluene, extensive decomposition occurs: however with pyridine in benzene a complex reaction, proceeding via two independent pathways, occurs involving transfer of both H⁺ and OH⁺ from the hydroxylamine to the base. Thus on mixing equimolar solutions of HON(SO₂R)₂ and pyridine in benzene, at room temperature, a white precipitate of pyridinium arenesulphonate C₅H₅NH⁺-SO₃R⁻ (25% yield), rather than the expected arenesulphinate C₅H₅NH⁺SO₂R⁻ (cf. eqn. 4) is formed,

- (ii) OH^+ transfer: ratio of OH^+ transfer to H^+ transfer $\simeq 5:1$
- (iii) Reaction (4)
- (iv) H_2O/air

SCHEME. Reaction of HON(SO₂R) with Pyridine.

leaving in solution the bis(arylsulphonyl)amine, $HN(SO_2R)_2$ (62%) and pyridine-N-oxide (40%).

Control experiments showed that C_5H_5NO does not oxidise SO_2R^- to SO_3R^- , although both NO and NO_2 can do so. However, the observed stoichiometry can be adequately rationalised (see Scheme) if it is supposed firstly, that H⁺ transfer from the hydroxylamine to the pyridine is followed by reaction 4; and secondly, that C_5H_5NO is capable of oxidising the intermediate $ONSO_2R$ (eqn. 6).

$$C_{5}H_{5}NO + ONSO_{2}R + 1/2H_{2}O \xrightarrow{\text{Air}} C_{5}H_{5}NH^{+} + SO_{3}R^{-} + NO_{2}$$
(6)

No products other than $C_5H_5NH^+SO_3R^-$, HN- $(SO_2R)_2$ and C_5H_5NO were detected, and the recovered yields of these products account for 87% of the initial SO_2R groups, and 90% of the initial C_5H_5N .

In an attempt to detect the transient presence of $ONSO_2R$ in the reactions of $HON(SO_2R)_2$ both with base and with oxidants, reactions of $HON(SO_2R)_2$ with pyridine and with PbO_2 [1] were conducted also in the presence of cyclopentadiene monomer,

since transient ONX species have been detected by trapping as Diels–Alder adducts with 1,3-dienes [5]. With PbO₂, oxidation occurred as usual to yield RSO₂ON(SO₂R)₂ [1], and the C₅H₆ was recovered unchanged. However, the reaction of HON(SO₂R)₂ with pyridine takes a different course when cyclopentadiene is present. HN(SO₂R)₂ was formed as in the reaction described above, but neither C₅H₅NH⁺-SO_xR⁻ (x = 2, 3) nor an adduct of ONSO₂R with C₅H₆ was detected: instead, the only product containing C₅H₅ groups was C₅H₅OSO₂R [m/e found: 236.0511 u; ¹²C₁₂⁻¹H₁₂¹⁶O₃⁻³²S₁ requires 236.0507 u]. This interesting derivative is a rare example of an oxygen-substituted cyclopentadienide.

References

- 1 J. D. Birchall and C. Glidewell, J. Chem. Soc. Dalton, 10 (1977).
- 2 J. D. Birchall and C. Glidewell, J. Chem. Soc. Dalton, in press.
- 3 J. D. Birchall and C. Glidewell, unpublished work.
- 4 A. Darchen and C. Moinet, Chem. Comm., 820 (1976).
- 5 G. W. Kirby, Chem. Soc. Revs., 6, 1 (1977).