Contribution from the Department of Chemistry, Washington State University Pullman, Washington 99163, U.S.A.

The Crystal Structure of Bis(Ethylenediammoniummonobromide)tetrabromocuprate(II)

Don N. Anderson and R. D. Willett

Received September 29, 1970

The compounds ethylenediammoniumtetrabromocuprate(II), $(NH_3CH_2CH_2NH_3)CuBr_4$ and bis(ethylenediammoniummonobromide)tetrabromocuprate(II), $(NH_{3} CH_2CH_2NH_2$. $HBr)_2CuBr_4$ were prepared and the structure of the latter compound determined by the multiple film X-ray diffraction technique. This compound crystallizes in the monoclinic space group $P2_1/m$ with a = 6.78 A, b = 20.15 A, c = 6.33 A, $\beta = 94.9^{\circ}$, and Z = 2 ($\rho_{calc} = 2.57$, $\rho_{obs} = 2.55$). Refinement by least squares on 944 reflections led to a final R of 10.9%. Four bromine atoms surround each copper atom in a very distorted compressed tetrahedral configuration at distances of $2.340(\pm 0.003)$ to 2.450- (± 0.010) while the unique angles are $141.1(\pm 0.3)$, $100.7(\pm 0.2), 99.0(\pm 0.2)$ and $118.1(\pm 0.3).$ The ethylenediammonium ions are hydrogen bonded to the $CuBr_{4}^{2-}$ ions and the remaining two bromine atoms. The compound $(NH_3CH_2CH_2NH_3)CuBr_4$ is isomorphous to the corresponding chloro complex and thus contains square planar $CuBr_4^{2-}$ ions.

Introduction

As a part of a continuing study of the coordination of copper(II) halide complexes, the preparation of the bromo complex¹ analogous to the ethylenediammonium tetrachlorocuprate(II) compound was attempted. In addition to deep red plate type crystals of the expected compound (enH2)CuBr4, dark red needle crystals with a stoichiometry corresponding to the empirical formula $(enH_2)_2CuBr_6$ were obtained (en =NH₂CH₂CH₂NH₂). Since an octahedrally coordinated species had been suggested for the corresponding cobalt(II) analogue (enH₂)₂CoCl₆^{2,3} a three-dimensional X-ray diffraction study was undertaken to determine the coordination of the copper(II) species.

Preparation and Data Collection

The compounds (enH₂)CuBr₄ and (enH . HBr)₂CuBr₄ were prepared by evaporation of an alcohol solution of CuBr₂ containing en . 2HBr in excess. The tetrabromo species crystallizes as flat plates while the complex with a formal stoichiometry of a hexabromo species crystallizes as long prismatic needles. Later preparations of (enH. HBr)₂CuBr₄ were made at 50°C from a 1:1 alcohol-water solution with a ratio of 1.25 en. 2HBr to CuBr₂.⁴. Samples were separated by mineralogical flotation (tetrabromomethane diluted with carbon tetrachloride).

Anal. Calculated for (enH. HBr)₂CuBr₄: Cu, 9.53; N, 8.40; C, 7.19; H, 3.02; Br, 71.9. Found: Cu, 9.62; N, 8.27; C, 7.17; H, 2.86; Br, 72.09.

The lattice constants for the monoclinic unit cell of (enH₂)CuBr₄, determined from Weissenberg photographs (Cu K_{α} and K_{β} radiation) exposed at 20°C, are a = 8.22 ± 0.02 A, b = 7.71 ± 0.02 A, c = $7.42 \pm$ 0.01 A, and $\beta = 92.12 \pm 0.05^{\circ.5}$ Systematic extinctions $[\ell = 2n+1 \text{ for } h0\ell \text{ reflections and } k = 2n+1$ for 0k0 reflections] imply the space group $P2_1/c$. The observed density is greater than 2.96 g/cc since the crystals sink in tetrabromomethane. The calculated density for Z = 2 is 3.22 g/cc. The lattice constants are nearly identical to those for the corresponding chloro complex⁶ as shown in Table I. Because of this isomorphism of the two compounds, and since the CuX₄²⁻ ion sits on a center of symmetry in the space group $P2_1/c$, it is reasonable to conclude that the bromo complex contains a square planar $CuBr_4^{2-}$ ion.

Table I. Lattice Constants for (enH₂)CuX₄ Compounds

(enH₂)CuBr₄	(enH ₂)CuCl ₄ ^a
8.22	8.11
7.77	7.37
7.42	7.19
92.12	92.46
P21/c	P2 ₁ / _c
	(enH ₂)CuBr ₄ 8.22 7.77 7.42 92.12 P2 ₁ / _c

^a Ref. 6.

The lattice constants for (enH . HBr)₂CuBr₄, determined from Weissenberg photographs (Cu K_{α} and K_{β} radiation) exposed at 20°C, are $a = 6.78 \pm 0.01$ A, $b = 20.15 \pm 0.01 \text{ A}, c = 6.33 \pm 0.01 \text{ A}$ and $\beta =$ $94.92 \pm 0.10^{\circ.5}$ Systematic extinctions [k = 2n + 1]for 0k0 reflections] were observed on the Weissenberg films of 0kl indicating the space groups $P2_1$ or $P2_1/m$. The observed density is 2.55 ± 0.03 g/cc

Anderson, Willett | The Crystal Structure of Bis (Ethylenediammoniummonobromide) tetrabromocuprate (II)

J. V. Dubsky and V. Dostal, Publ. Faculte Sci. Univ. Masaryk, 160, 1 (1932).
 M L. Schultz, J. Am. Chem. Soc., 71, 1288 (1949).
 Meyer and K. Hochne, Z. Anorg. Allgem. Chem., 222, 161 (1935).

⁽⁴⁾ Our thanks to M. Moustafa for the refined preparation.
(5) Errors are the standard deviations for measurement of 8-14 pairs of axial reflections.
(6) G B. Birrell, G. L. Ferguson, and B. Zaslow, paper E-4, 1968 Winter Meeting of American Crystallographic Association, Tuscon, Autonom. Arizona.

Table II. Parameters for (EnH. HBr)₂CuBr, ^{a. b}

Atom	x	У	z	β1	β22	β33	β12	β ₁₃	β ₂₃
Cu(1)	0.3983(10)	0.2500	0.3112(6)	0.0289(37)	0.0019(1)	0.0297(11)	0.0	0.0020(14)	0.0
Br(2)	0.3098(5)	0.1405(1)	0.2244(3)	0.0404(26)	0.0021(1)	0.0323(6)	-0.0009(2)	0.0006(9)	0.0010(1)
Br(3)	0.7459(9)	0.2500	0.2340(5)	0.0323(35)	0.0037(1)	0.0320(9)	0.0	0.0027(12)	0.0
Br(4)	0.8012(5)	0.0065(1)	0.2598(3)	0.0301(23)	0.0026(1)	0.0245(5)	0.0003(2)	-0.0040(8)	0.0000(1)
Br(5)	0.3253(7)	0.2500	0.6797(4)	0.0331(30)	0.0023(1)	0.0251(7)	0.0	0.0003(10)	0.0
N(6)	0.6835(46)	0.0320(10)	0.7610(31)	0.0403(142)	0.0033(6)	0.0453(69)	0.0016(21)	0.0016(72)	-0.0025(15)
C(7)	0.6541(59)	0.1043(12)	0.7551(43)	0.0429(166)	0.0024(5)	0.0617(102)	-0.0013(27)	0.0413(105)	0.0026(18
C(8)	0.8478(62)	0.1395(11)	0.7687(34)	0.0560(175)	0.0030(6)	0.0288(55)	0.0036(26)	0.0091(74)	-0.0009(14
N(9)	0.9636(50)	0.1378(9)	0.5817(36)	0.0568(156)	0.0030(5)	0.0495(75)	0.0008(21)	0.00126(81)	0.0022(15

$$\begin{split} R_{i} &= \sum_{hki} ||F_{obs}| - |F_{cald}| / \sum_{hki} |F_{obs}| = 0.11. \ \text{For Observed Reflections.} \ ^{a}\text{ Estimated standard deviation of the final digits are given in parentheses.} \ ^{b}\text{The } \beta_{ij} \text{ are defined by } T = \exp(-\beta_{1i}h^{2} - \beta_{22}k^{2} - \beta_{33}\ell^{2} - 2\beta_{12}hk - 2\beta_{23}k\ell). \end{split}$$

(flotation in a carbon tetrachloride-carbon tetrabromide mixture) while the calculated density is 2.57 g/cc for Z = 2.

Intensity data for (enH . HBr)₂CuBr₄ were collected on a Weissenberg camera using Cu K_a radiation and a Ni filter. The crystal used was 0.02 cm long (parallel to the <100> direction) by 0.008 cm (square cross-section). The linear absorption coefficient was 199 cm⁻¹. No absorption corrections were applied. The zero through third layers were collected while rotating about the <100> direction (needle axis) and a zero layer was collected while rotating about the <010> direction. From these layers 944 observed reflections were recorded, of which 895 were unique. The intensities were estimated visually and reduced to structure factors with associated weights for subsequent least square analysis.⁷

Determination of Structure

The locations of the copper and bromine atoms were determined from study of two- and three-dimensional Patterson functions.⁸ The space group P2₁/m was assumed and substantiated by the successful structure solution. These positions were refined by least squa-

res analysis.⁹ When a value of R_1 (see Table II for definition of R_1) below 0.20 was obtained, the positions of the carbon and nitrogen atoms were obtained by a difference Fourier synthesis.⁸ The final refinement with anisotropic temperature factors was car-

Figure 1. $(enH.HBr)_2CuBr_4$ from the <141> direction showing 1/4 of the unit cell and major interatomic distances and bond angles. The atoms are labeled as shown in Table IV.

Figure 2. (enH.HBr)₂CuBr₄ viewed parallel to the mirror plane at y = 1/4 showing the CuBr₄²⁻ ion and its environment to a distance of 4.00 Å. All atoms within 4.00 Å of the ion are shown connected by slim « bonds » to the bromine.

(7) D. N. Anderson, Ph. D. Thesis, Washington State University, 1970 For the weighting scheme employed see R. D. Willett, C. Dwiggens Jr., R. F. Kruh, and R. E. Rundle, J. Chem. Phys., 38, 2429 (1963). (8) W. G. Siy, D. P Shoemaker, and J. H. Van den Hende, ESSO Research and Engineering Company Report CBRL-22M-62 (1962).
(9) W. R. Busing, K. O. Martin, and H. A. Levy, U. S. Atomic Energy Commission Report ORNL-TM-305 (1962).

Inorganica Chimica Acta | 5:1 | March, 1971

^a The columns list k, ℓ , 10|F_{obs}|, and 10 F_{calc}. Unobserved reflections are denoted by a negative 10|F_{obs}|.

ried to a value of $R_1 = 0.11$ for the observed reflections and 0.13 for all reflections.¹⁰ Unobserved reflections were omitted from the refinement if the calculated structure factor was less than F_{min} the structure factor corresponding to the minimum observable

(10) Atomic scattering factors, (corrected for the real component of the anomalous dispersion term in the case of the Cu and Br atoms) were obtained from: International Tables for X-ray Crystallography Vol. 111, 202-207, 214.

Table III. Observed and Calculated Structure Factors For (EnH. HBr), CuBr, a

Table IV. Interatomic Distances and Angles for (EnH. HBr)₂CuBr₄^a

-		Distances and angles in the	CuBr42- and enH	2 ²⁺ ions			
Cu(1,1)-Cu(1,8) Cu(1,1)-Br(2,1) Cu(1,1)-Br(3,1) Cu(1,1)-Br(5,1) Cu(1,1)-Br(4,1) Cu(1,1)-Br(4,2)	10.420(05) 2.340(03) 2.447(10) 2.426(06) 5.637(05)	Br(2,1)-Br(3,1) Br(2,1)-Br(5,1) Br(3,1)-Br(5,1) N(6,1)-C(7,1) C(7,1)-C(8,1) C(2,1)-D(2,1)	3.686(07) 3.624(05) 4.179(06) 1.470(31) 1.489(60)	Br(2,1)-Cu(1,1)-Br(2,2) Br(2,1)-Cu(1,1)-Br(3,1) Br(2,1)-Cu(1,1)-Br(5,1) Br(3,1)-Cu(1,1)-Br(5,1) N(6,1)-C(7,1)-C(8,1) C(7,1)-C(8,1)	141.1(0.3) 100.7(0.2) 99.0(0.2) 118.1(0.3) 110.7(3.2)		
Br(2,1) - Br(2,2)	4.415(04)	C(8,1) = N(9,1)	1.470(43)	C(7,1) - C(0,1) - N(9,1)	116.0(2.0)		
		Hydrogen bonding dis	tances and angles				
$\begin{array}{l} N(6,1) - Br(2,6) \\ N(6,1) - Br(4,1) \\ N(6,1) - Br(4,4) \\ N(6,1) - Br(4,5) \\ N(6,1) - Br(4,5) \\ N(9,1) - Br(2,3) \\ N(9,1) - Br(3,1) \\ N(9,1) - Br(3,5) \\ N(9,1) - Br(4,1) \\ N(9,1) - Br(4,4) \\ N(9,1) - Br(5,1) \\ N(9,1) - Br(5,3) \end{array}$	3.477(31) 3.376(21) 3.592(30) 3.231(22) 3.368(31) 3.396(31) 3.403(26) 5.043(25) 3.461(23) 3.425(23) 4.977(34) 3.354(30)	$\begin{array}{c} C(7,1) - N(6,1) - Br(2,6)\\ C(7,1) - N(6,1) - Br(4,1)\\ C(7,1) - N(6,1) - Br(4,4)\\ C(7,1) - N(6,1) - Br(4,5)\\ C(7,1) - N(6,1) - Br(4,6)\\ Br(4,1) - N(6,1) - Br(2,6)\\ Br(4,1) - N(6,1) - Br(4,4)\\ Br(4,1) - N(6,1) - Br(4,4)\\ Br(4,1) - N(6,1) - Br(4,6)\\ Br(4,4) - N(6,1) - Br(4,6)\\ Br(4,4) - N(6,1) - Br(4,6)\\ Br(4,4) - N(6,1) - Br(4,6)\\ Br(4,5) - N(6,1) - Br(4,6)\\ Br(4,5) - N(6,1) - Br(4,6)\\ Br(4,5) - N(6,1) - Br(4,6)\\ Br(4,6) - N(6,1) - Br(2,6)\\ \end{array}$	173.0(2,5) 99.8(1.7) 110.1(2.2) 101.8(1.5) 95.6(2.2) 82.5(0.7) 67.9(0.5) 146.7(0.9) 103.7(0.7) 77.0(0.6) 80.9(0.6) 153.8(0.7) 79.2(0.6) 99.2(0.7) 77.4(0.7)	$\begin{array}{c} C(8,1) - N(9,1) - Br(2,3) \\ C(8,1) - N(9,1) - Br(3,1) \\ C(8,1) - N(9,1) - Br(4,1) \\ C(8,1) - N(9,1) - Br(4,4) \\ C(8,1) - N(9,1) - Br(5,3) \\ Br(2,3) - N(9,1) - Br(5,3) \\ Br(2,3) - N(9,1) - Br(5,3) \\ Br(3,1) - N(9,1) - Br(5,3) \\ Br(4,1) - N(9,1) - Br(3,1) \\ Br(4,1) - N(9,1) - Br(3,1) \\ Br(4,1) - N(9,1) - Br(3,1) \\ Br(4,1) - N(9,1) - Br(5,3) \\ Br(4,4) - N(9,1) - Br(5,3) \\ \end{array}$	$\begin{array}{c} 168.3(2.6)\\ 105.8(2.0)\\ 109.0(2.0)\\ 92.9(2.0)\\ 105.5(2.0)\\ 81.0(0.5)\\ 64.9(0.6)\\ 86.7(0.5)\\ 79.8(0.5)\\ 91.6(0.7)\\ 68.9(0.6)\\ 144.6(1.0)\\ 83.0(0.6)\\ 156.8(1.0)\\ 101.7(0.8)\end{array}$		
	Van der Waals contacts						
Br(2,1)C(7,1) Br(2,5)C(7,1) Br(2,5)C(8,7) Br(2,5)Br(5,1) Br(3,1)C(8,1)	3.991(29) 3.999(30) 4.073(44) 4.102(05) 4.061(22)	Br(3,5)-C(8,1) Br(4,1)-C(7,1) Br(4,5)-C(7,1) Br(4,8)-Br(4,9) Br(4,9)-C(8,8)	3.802(22) 3.904(33) 3.813(38) 3.896(05) 3.798(24)	Br(4,10)—C(7,8) Br(5,1)—C(7,1) Br(5,1)—Cu(1,5) Br(5,1)—C(8,7)	3.804(35) 3.693(31) 3.986(05) 4.008(30)		

^a The first subscript refers to the atom in the parameter list and in Figure 1. The second subscript refers to the atom moved according to the following symmetry operations:

1)	x, y, z	4) 2—x, —y, 1—z
2)	x, $\frac{1}{2}$ —y, z	5) x, y, $1+z$
3)	1 + x, y, z	6) $1-x, -y, 1-z$

intensity. The largest peaks remaining on the difference map after refinement were peaks of 1.8 e/A^3 near bromine atoms and 1.0 e/A^3 near the ethylene-

Figure 3. $(enH \cdot HBr)_2CuBr_4$ from the <001> direction showing the packing inside one unit cell.

diammonium ion. Final parameters are listed in Table II and the observed and calculated structure factors are given in Table III. Bond distances and angles were computed with the ORFFE program and may be found in Figures 1 and 2, and Table IV.¹¹ The packing within the unit cell may be seen in Figure 3.

10) x, y+1, z

Discussion

7) x-1, y, z 8) 1-x, 1-y, 1-z 9) x-1, y+1, z

This structure is not close to any regular coordination geometry; however, for purposes of discussion, we will describe it as an extremely distorted tetrahedral $CuBr_4^{2-}$ ion with C_s symmetry as illustrated in Figure 1. The ion contains two short Cu–Br bonds of 2.340(3)A and two longer Cu–Br bonds of 2.426(6) and 2.447(10) A. The shortest distance from the copper ion to the other bromide ions is 5.637 A. The bond angles show considerable deviation from tetrahedral angles with four of the Br–Cu–Br angles compressed in pairs to 99.0° and 100.7°, and the other two angles widened to 118.1° and 141.1°. The tetrabromocuprate ion is thus distorted in a different manner than the corresponding ion in Cs₂CuBr₄.¹² In the

(11) W. R. Busing, K. O. Martin, and H. A. Lev, U. S. Atomic Energy Commission Report ORNL-TM-306 (1964).
(12) B. Morosin and E. C. Lingafelter, Acta Cryst., 13, 807 (1960).

Table V. Bond Distances and Angles in Several CuX₄²⁻ ions

	(enH . HBr)₂CuBr₄	Cs ₂ CuBr ₄ ^a	[(CH ₃) ₂ NH ₂] ₃ CuCl ₅ ^b	Cs2CuCL c
Angles	-			
c	141.1(3)	130.4(4)	136.1(2)	124,9(7)
	118.1(3)	126.4(3)	135.5(2)	123.3(7)
	100.7(2)	101.9(3)	98.6(1)	102.9(7)
	99.0(2)	99.9(3)	97.7(1)	102.5(7)
Distances				
	2.340(3)	2,354(9)	2.229(6)	2.18(3)
	2.340(3)	2.354(9)	2.229(6)	2.18(3)
	2.426(6)	2.380(9)	2.229(9)	2.18(3)
	2.447(10)	2.394(9)	2.232(6)	2.25(3)

^a Reference 12. ^b M. L. Larsen, Ph D. Thesis, Washington State University (1968). ^c B. Morosin and E. C. Lingafelter, J. Chem. Phys., 65, 50 (1961).

cesium compound, the corresponding Br–Cu–Br bond angles are 99.9, 101.9, 126.4, and 130.4°, while the bond lengths only vary from 2.35 A to 2.39 A, as shown in Table V. It is interesting to note that the total distortion in the two ions is not much different if one compares the average value of the two compressed angles (99.8 ν s. 100.4°) and of the two enlarged angles (129.6 ν s. 128.4°) in the two different compounds. However, the displacement of the center of mass of the bromide ions from the copper ion is much larger in the ethylenediammonium compound (0.238 A) than in the cesium compound (.035 A). This greater displacement is a direct result of the one large Br– Cu–Br bond angle and the difference in the lengths of the two pairs of Cu–Br bond distances.

Examination of the N-Br interatomic distances and the C-N-Br angles reveals several possibilities for N-H ... Br hydrogen bonding in this compound. Nitrogen atom N(6,1) has four close bromide ions, Br-(4,5), Br(4,6), Br(4,1) and Br(4,4), at 3.23, 3.37, 3.38 and 3.59 Å and one distance to Br(2,6) of 3.48 Å, with corresponding C-N-Br angles of 101°, 96°, 100°, 110° and 173° respectively (Figure 1). Thus, the first four ions are potential sites for N-H.. Br hydrogen bonding (although the N-Br distance and Br-N-Br angles indicate Br(4,4) is not as favorably located as the other three) and thus the NH₃⁺ group is probably disordered. Nitrogen atom (9,1) has five close bromide ions, Br(5,3), Br(2,3) Br(3,1), Br(4,4), and Br(4,1), at 3.35, 3.40, 3.40, 3.42, and 3.46 A respectively. The C-N-Br angles to Br(5,3), Br(3,1), Br(4,4), and Br(4,1) are nearly tetrahedral (105°, 106°, 93°, and 109° respectively) but the angle to Br(2,3) deviates considerably, being nearly linear (168°). Thus, as is revealed by examination of Figure 2, Br(2) is not involved in hydrogen bonding. Again, the hydrogen bonding is probably disordered.

It is of interest to discuss the possible reasons for the large difference between the two « widened » Br-Cu-Br angles in the CuBr4²⁻ ion since this discrepancy is not observed in other complexes containing distorted CuX4²⁻ ions. The Br(2)-Cu-Br(2) angle does not appear to be sterically constrained, since all contacts between Br(2) and other atoms are at distances greater than the sum of the van der Waals radii (except for that with N(9) at 3.40 A). In particular, the closest contacts are those which prevent the angle from becoming larger. However, examination of the packing around Br(3) and Br(5) shows that steric restraint determines the Br(3)-Cu-Br(5) angle. Both of these bromine atoms are surrounded by four atoms that « box » it in (Figure 2). Br(5) sits near the center of a square formed by two N(9) atoms (3.35 Å) and two C(7) atoms (3.69 Å). Br(3) sits near the center of a square by two different N(9) atoms (3.40 Å) and two C(8) atoms (3.80 Å). The two squares are joined together by a pair of C(7)–C(8)–N(9) linkages, thus fixing the bromine positions.

In this structure, then, the Br(2)–Cu–Br(2) bond angle of 141.1 is the less sterically hindered value of the two angles which are widened by the distortion from tetrahedral geometry. An idealized $CuBr_4^{2-}$ ion should have four Br–Cu–Br angles of 100° and two of 141°. This is consistent with the trend observed in complexes containing the distorted tetrahedral $CuCl_4^{2-}$ ion. There, as shown by the data in Table V, the « widened » angles are 120° and 136° in Cs₂CuCl₄ and [(CH₃)₂NH₂]₃CuCl₅ respectively, as compared with 128° and 141° respectively for Cs₂CuBr₄ and the idealized CuBr₄²⁻ ion in (enH . HBr)₂CuBr₄.

The geometry of CuX_4^{2-} species in the solid state depends on many factors, including crystal field stabilization, ligand-ligand repulsions, Jahn-Teller distortions, hydrogen bonding, and van der Waals forces. The role of ligand size is illustrated by examining the ethylenediammoniumcopper halide systems. For the chloride, crystal field stabilization dominates, and only the square-planar ion is formed. (It should also be noted that the structure assumed by that compound provides for efficient hydrogen bonding and packing). In the bromide system, ligand-ligand repulsions increase and offset the crystal field stabilization sufficiently to form the distorted tetrahedral species (although the square-planar species still exists). In order to otbain efficient hydrogen bonding in the structure containing the disorted tetrahedral ion, however, it is necessary to incorporate two bromide ions into the lattice. The effect of ligand-ligand repulsions shows up in the bond distances in the $CuBr_4^{2-}$ ion in (enH. HBr)₂CuBr₄ also. The Br(2)-Cu-Br(2) angle is large, so that the Cu-Br(2) bonds can shorten to 2.34 A and still maintain a Br(2)-Br(2) distance of 4.41 A. With the smaller Br(3)-Cu-Br(5) angle, these Cu-Br distances increase to 2.44 A to offset increased ligand-ligand repulsions. Despite this, the Br(3)-Br(5) distance is only 4.18 A.

Acknowledgment. This research was partially supported by PRF Grant No. 3152-A3.