Contribution from the Istituto di Chimica Generale ed Inorganica, University of Modena, 41100 Modena, Italy

On the Complexes of Tetramethyl- and Tetraethyl-Dithiooxamide with Manganese(II), Iron(II), Cobalt(II), Nickel(II) and Copper(II)

G. Peyronel, G.C. Pellacani, A. Pignedoli, and G. Benetti

Received November 16, 1970

The complexes of the ligands (L): tetramethyldithiooxamide (Met₄D) and tetraethyldithiooxamide (Et₄D) with the metals (M): Mn^{II}, Fe^{II}, Co^{II}, Ni^{II}, and Cu^{II}, were investigated in various media; the complexes identified by the Job method have the same metal: ligand ratios and the same electronic spectra (except those of Cu) as the corresponding solids, having the general formulae ML_3A_2 ($A = ClO_4^-$, $FeCl_4^-$) and Cu- LX_2 (X = Cl, Br); copper perchlorate gives with Met₄D only the 1:2 complex Cu(Met₄D)₂(ClO₄)₂. I.R. and far I.R. spectra and magnetic susceptibilities, in the range 100-300°K, were also investigated. The octahedral, high-spin, sulphur-coordinated ML₃A₂ complexes show a greater deformation for the Met₄D- than for the Et_4D -derivatives. $CuLX_2$ complexes have a cis configuration. All d-d bands were assigned, and the Dq, B, and B values were evaluated; the spectrochemical series Ni > Co > Fe > Cu was obtained. The lower Dq-values for the Et₄D-complexes are attributed to a greater steric effect of the Et_4D -ligand.

Introduction

In neutral or alkaline media dithiooxamide and partially substituted dithiooxamides with divalent transition ions generally give neutral inner complexes of the type $(M \ Dithiox)_n$.¹⁻³

We have already demonstrated^{4,5} that in strong acid media dithiooxamide and partially substituted dithiooxamides form complexes of the type M^{II}(Dithiox)₂- $(ClO_4)_2$ (M = Ni, Cu) or Co^{III}(Dithiox)₃(ClO₄)₃ without losing protons upon complexation. From strong acid media we also prepared the Et₄D-complexes: M^{II}(Et₄-D)₃(ClO₄)₂ (M=Co, Ni, Cu) and Cu(Et₄D)Cl₂.⁵ These results demonstrated that the removal of amidic hydrogens or their absence in the dithiooxamide are not essential for the complexation.

Recently Hart et al.,6 considering it likely that a tetrasubstituted dithiooxamide could form transition

J. Barcelo, Spectrochim. Acta, 10, 245 (1958).
 R.N. Hurd, G. De La Mater, G.C. McElheny, and L.V. Peiffer, J. Am. Chem. Soc., §2, 4454 (1960).
 R.N. Hurd, G. De La Mater, G.C. McElheny, and P. McDermott, «Advances in the Chemistry of the Coordination Compounds», The McMillan Co., New York 1961, p. 350.
 A. Pignedoli and G. Peyronel, Gazz. Chim. 11., 93, 564 (1963).
 G. Peyronel, A. Pignedoli, and G.C. Pellacani, Proceedings of IX 1 C.C.C., St. Moritz-Bad, Sept. 1966, Verlag Helvetica Chimica Acta, Basle 1966, p. 313.
 D.H. Hart, P.S. Rolfs, and J.M. Kessinger, J. Inorg. Nucl. Chem., 32, 469 (1970).

metal complexes more easily in non-coordinating media, prepared the same type of Et₄D-complexes from neutral anhydrous media and partially studied them by physical methods.

We had in the meantime extended our investigations to (a) the influence of the medium on the complexation, (b) the type of complexes existing in several solutions, (c) a comparative study of the parent ligand tetramethyldithiooxamide (Met₄D) and to (d) a more complete analysis of their spectroscopic and magnetic properties.

Experimental Section

Both tetramethyl- and tetraethyl-dithiooxamide were prepared by the method described by R.N. Hurd et for tetraethyl-dithiooxamide. The yield of Met₄D al.. (47%) is greater than that obtained with a different method by Klöpping (36%).8 The acids were used at the concentrations: HAc = glacial, $HClO_4 = 60\%$, HCl=37%, HBr=48%. All reagents were of the best pure chemical grade.

For the preparation of the complexes, the metal salts and the ligand were separately dissolved in the media summarized in Table I without any dehydration. Only in the two cases indicated were Mn and Fe perchlorates dehydrated with 2,2'-dimethoxypropane (DMP). Most of the solutions were prepared at 70-80°; the crystalline complexes were obtained by mixing the two solutions with the metal: ligand ratio indicated and then cooling. The copper complexes were prepared at room temperature in order to avoid the reduction of copper. No manganese complex of Met₄D was obtained in HAc or acetone even when the manganese perchlorate was dehydrated with dimethoxypropane; only in the HAc+HClO₄ solution, at high concentration, is an orange complex formed in solution. In all cases, however, only Met₄D recrystallizes. The Fe(Me₄D)₃(ClO₄)₂ complex was obtained by dehydrating Fe(ClO₄)₂. 6H₂O in DMP at 50°, adding Met₄D dissolved in boiling acetone (solvent ratio 1:1.5), evaporating the mixture to 1/3 of the volume, adding 3 volumes of HAc, concentrating to 1/2 volume, and cooling the solution. In the com-

263

⁽⁷⁾ R.N. Hurd, G. De La Mater, G.C. McElheny, R.J Turner, and V.H. Wallingford, J. Org. Chem., 26, 3980 (1961).
(8) H.L. Klöpping and G.J.M. Van der Kerk, Rec. Trav. Chim., 70, 917 (1951).

Metal salt	Ligand	M: L used**	Solvent	M: L (solution) (Job)	M: L (solid)
Mn(ClO ₄) ₂ . 6H ₂ O	Met ₄ D	1:3	HAc or HAc+HClO ₄ or DMP+Acetone(1:2)		(-)
	E. D	1.45	or $DMP + \Pi AC(1; 1)$	• • •	
		1:4,5	HAC HAc on Acotomo		$ML_3(CIO_4)_2$
$Fe(CIO_4)_2 \cdot A\Pi_2O$	MetaD	1:1	DMB Asstans HAs		
		1:2	DWP + Acetone + HAC		$ML_3(CIO_4)_2$
	ELD	1:2.5			$ML_3(CIO_4)_2$
FeCI ₃ . 6H ₂ O	Met ₄ D	1:5	HAC	• • •	ML ₃ (FeCl ₄) ₂ +
a b b b c b c c c c c c c c c c	Et ₄ D	1:3	HAC	:::	ML ₃ (FeCl ₄) ₂ •
$CoAc_2$, $4H_2O$	Met ₁ D	1:3	$HAc + HCIO_4(9; 1)$	1:3	ML ₃ (CIO ₄) ₂ *
	Et₄D	1:3	$HAc + HClO_4(9:1)$	1:3	$ML_3(ClO_4)_2$
	»		HAc or $HAc+HCl(9:1)$	no reaction	•••
NiAc ₂ . 4H ₂ O	Met ₄ D	1:2	$HAc + HClO_{4}(9:1)$	1:3	ML ₃ (ClO ₄) ₂ *
	»	• • •	HAc + HCl(19:1)	1:3	(c)
	Et₄D	1:2	$HAc + HClO_{4}(9:1)$	1:3	ML ₃ (ClO ₄) ₂
	»		HAc + HCl(19:1)	1:3	(c)
CuAc ₂ . H ₂ O	Met ₄ D	1:3	$HAc + HClO_{4}(8:2)$	1:2	$ML_2(ClO_4)_2^*$
	»	1:2	HAc+HCl(19:1)	1:1	MLCl ₂ *
	Et₄D	1:3	$HAc + HClO_{4}(9:1)$	1:3	ML ₃ (Č O ₄),
	»	2:1	HAc + HCl(19:1)	1:1	MLCL*
	»	2:1	HAc + HBr(9:1)		MLBr ₂ *
	»		MetOH or MCS	no reaction	
Cu(ClO ₄), 6H ₂ O	Met D	1:3	MetOH or MCS	1:2	ML(CIO),*
	FtD		MetOH	1.2	11152(0104)/2
	»	•••	MCS	1.3	•••
	»	1.3	EtOH or EtOH \pm HCIO	1.5	ML (CIO.)
CuCl. 2H.O	Ft.D	1,3	MetOH	no reaction	
CuCi2 . 21120	Luc	1 • 1	FiOH	no reaction	ML CL *
C. P. 211 O	Mot D	1.1		• • •	MIDUI2
	MCGD	1:1	MEIOH + EUNDI	• • •	IVILDI2

Table I. Reagents and solvents used; Metal: Ligand ratios (M: L) obtained in solution by the Job method and in the solid complexes.

(**) For the preparation of the solids. (*) New compounds. (a) Solid Met D is obtained. (b) Solid Met D. HClO, is obtained (For C₆H₆N₂S₂, S: calcd 23.18%, found 21.87%; N: calcd 10.12%, found 9.87%; Cl: calcd 12.81%, found 12.25%). (c) Solid NiCl₂ is obtained.

Table II. Analytical results.

		Analyses								
Compound	Color	%	Metal	% Si	ılphur	% H	alogen	% Ni	trogen	
*		Found	Calcd	Found	Calcd	Found	Čalcd	Found	Čalcd	
$Fe(Met_{4}D)_{3}(ClO_{4})_{2}$	Red	7.39	7.13	23.95	24.56	8.77	9.05	10.99	10.73	
Fe(Met,D),(FeCl ₄) ₂	Red-brown	16.91	17.10	19.50	19.63	29.07	28.95	8.67	8.58	
Fe(Et ₁ D) ₁ (FeCl ₁) ₂	Red-brown	13.96	14.59	16.57	16.76	24.79	24.71	7.40	7.32	
$Co(Met_{1}D)$ (ClO ₄)	Red-brown	7.60	7.49	23.78	24.45	8.30	9.01			
Ni(Met D) ₁ (ClO ₄) ₂	Red-brown	7.37	7.46	23.19	22.46	8.87	9.02			
Cu(Met.D),(ClO ₄),	Black	10.16	10.33	21.24	20.85	10.69	10.85			
Cu(MetD)Cl	Black	20.41	20.45	21.08	20.64	22.66	22.82			
Cu(Met.D)Br	Black	16.21	15.90	16.35	16.05		• • •			
Cu(EtaD)Cl ₂	Black	17.18	17.32	17.39	17.48	19.49	19.33	7.77	7.64	
Cu(Et ₁ D)Br ₂	Black	13.83	13.94	13.50	14.07	•••	•••	•••	•••	

plexes Fe. L_3 . (FeCl₄)₂ the Fe^{II} ion is produced by reduction of Fe^{III} by the dithiooxamides. The complex Cu(Met₄D)Br₂ was obtained only from neutral solutions in MetOH with an excess of Et₄NBr, since in HAc+HBr solution copper is partially reduced giving heterogeneous solid products. The compounds were analysed by conventional methods (Table II).

The electronic spectra were recorded from 200 to 2000 mµ with a Beckman DK-1 spectrophotometer. The solids were homogeneously distributed on a filter paper or in nujol mulls. The solution spectra were measured in 1.0, 0.5, and 0.1 cm quartz cells. The metal: ligand ratio for the complexes of Co, Ni, Cu existing in various media was determined by the Job method⁹ of continuous variations. I.R. spectra were

(9) P. Job, Ann. de Chemie, IX, 113 (1928).

recorded on KBr pelletts with a Perkin Elmer 521 spectrophotometer from 4000 to 250 cm^{-1} and the far infrared spectra in nujol mulls with a Perkin Elmer FIS3 spectrophotometer from 400 to 60 cm⁻¹. Magnetic susceptibilities were measured on the solid complexes at room temperature or from 100 to 300°K by the Gouy method using a stabilized electromagnet and HgCo(CNS)¹⁰ or Nien₃S₂O₃¹¹ as calibrants. Molar susceptibilities were corrected using tabulated diamagnetic corrections.^{12,13} Four independent measurements were made at room temperature for each com-

(10) B.N. Figgis and R.S. Nyholm, J. Chem. Soc., 4190 (1958).
(11) N F. Curtis, J. Chem. Soc., 3147 (1961).
(12) P.W. Selwood, «Magnetochemistry», Interscience Publ., New York, N.Y., 1956, pp. 91-95.
(13) B.N. Figgis and J. Lewis, «Technique of Inorganic Chemistry-Magnetochemistry», Vol. IV, J. Wiley and Sons, New York, N.Y. 1965, p. 142.

pound, and the mean value of susceptibilities was used to calculate the given B.M. value. The conductivities of the complexes in nitromethane or DMF solution were measured with a WTW conductivity bridge at 25°C.

Results and Discussion

The influence of various media on the formation of complexes in solution or in the solid state is shown in Table I. In solution either the complexes were identified only by their spectra or, as in the cases indicated, their M:L ratio was determined by the Job method.

In none of the systems investigated, except in the case of the formation of the solid Fe(Met₄D)₃(ClO₄)₂ complex, does water, even if present in a large extent, seem to be a determining factor against the formation of complexes in solution or in the solid state. Other components of the systems have a greater influence: CoAc₂. 4H₂O and Et₄D do not react in the anhydrous glacial acetic acid, but they do react when HClO₄ is added to the solution; $Ni(ClO_4)_2$. $6H_2O$ or $NiCl_2$. H₂O and Et₄D react in methylcellosolve only when HClO₄ or HCl respectively, were added and the solid $Ni(Et_4D)_3(ClO_4)_2$ complex may be obtained; Et_4D does not react with CuAc₂. H₂O in methanol or methylcellosolve (MCS), but it does react in these solvents with Cu(ClO₄)₂. 6H₂O giving 1:2 and 1:3 complexes, respectively. Thus the solvent and the anion show a competitive action which is different from metal to metal and in many cases vanishes by adding strong mineral acids.

A protonation of the amidic nitrogen of the dithiooxamide may occur with strong acids. On the one hand, this protonation should reduce the availability for complexation of the nitrogen atom, since it is protonated, and of the sulphur atom, because of a reduction of the resonance form $R_2N^+ = C - S^-$; on the other hand, this protonation could break some hydrogen bonds between the hydroxylated solvents and the nitrogen atoms of the molecule, thus making possible a free rotation of its groups, and could favour the formation of bridged hydrogen bonds of the type:

$$-0 \stackrel{(+)}{\leftarrow} HN - C = S \\ H \cdots N - C = S \\ B \\ R$$

favourable to the complexation of both sulphur atoms.

Halide ions also show a different behaviour toward the various metal ions. In the FeL₃(FeCl₄)₂ complexes Fe^{II} is entirely bonded to the dithiooxamide while Fe^{III} is cordinated only by the chloride ions. CoCl₂ whether in HAc-HCl solution or in MCS, does not react with Et₄D, yielding only the spectrum of $(CoCl_4)^{2-}$. Ni^{II} reacts in HAc-HCl solution with both Met₄D and Et₄D to form the 1:3 complex, but yields only NiCl₂ on evaporation. CuLX₂ complexes contain halide ions coordinated to the metal. The competitive action of the halide ions against these dithiooxamides seems therefore to be greater for Fe^{III} and Co^{II}, inter-mediate for Ni^{II} and Cu^{II} and lower for Fe^{II}.

The complexes identified in solution by the Job me-

thod have the same metal: ligand ratio and the same spectra (except those of Cu^{II}) as the solids obtained from the same solutions. Also, the spectra of the 1:3 complexes given by Ni^{II} with both the ligands in HAc+HCl solution are identical to those of the corresponding perchlorate complexes. The form of the Job triangles indicates that these complexes do not appreciably dissociate in solution and do not interact with the solvents in which they can be formed.

The molar conductance values, in nitromethane, of the ML_3A_2 complexes (A=ClO₄ or FeCl₄), and of Cu(Met₄D)₂(ClO₄)₂ ($\lambda_m = 138-184 \text{ cm}^2 \Omega^{-1} \text{ mole}^{-1}$) fall in the correct range for a 1:2 electrolyte,¹⁴ while the CuLX₂ complexes ($\lambda_m = 15-38 \text{ cm}^2 \Omega^{-1} \text{ mole}^{-1}$) behave like non-electrolites.¹⁵

Magnetic susceptibilities. The magnetic moments (Table III) of the Cu(Met₄D)₂(ClO₄)₂ and CuLX₂ complexes at room temperature are all within the range characteristic of a tetragonal coordination. Those of the $ML_3(ClO_4)_2$ complexes and of the FeL_3^{2+} ion in the $FeL_3(FeCl_4)_2$ complexes are within the range expected for spin-free weak-field octahedral complexes.6,16,18

Figure 1. A) Plots of $1/\chi_m$ versus T (°K) and B) Plots of $\mu_{eff}(B.M.)$ versus T (°K) for the complexes: (A) Mn(Et₄D)₃(ClO₄)₂; (B) Fc(Et₄D)₃(ClO₄)₂; (C) Co(Met₄D)₃- $(ClO_4)_2$; D) Co(Et₄D)₃(ClO₄)₂; (E) Ni(Met₄D)₃(ClO₄)₂; (F) Ni-(Et₄D)₃(ClO₄)₂. Dashed lines correspond to the μ_{eff} values corrected for the temperature independent paramagnetism (t.i.p.).

For all the Mn, Fe, Co, Ni perchlorate complexes the Curie law is obeyed over the whole temperature range 100-300°K. The plots of $1/\chi_m$ versus T (Figure 1A) gave straight lines, where the intercepts θ in the formula μ (θ)=2.83 [χ_m (T- θ)]⁴ are, for the Met₄D-complexes, Co=+5°, Ni=-24° and for the Et₄D-complexes, Mn=+3°, Fe=+21°, Co=-16°, Ni $=-7^{\circ}$. These values of Curie-Weiss temperature are in the range of other values given in the literature.19,20a The magnetic moments ($\mu_{eff} = 2.83 [\chi_m T]^{\frac{1}{2}}$)

(14) N.S. Gill and R.S. Nyholm, J. Chem. Soc., 3997 (1959).
 (15) S.K. Madan and C. Goldstein, J. Inorg. Nucl. Chem., 28, 1252

(1966)

(1966).
(16) J. Lewis and R.G. Wilkins, «Modern Coordination Chemistry», Interscience, New York, N.Y., 1964, chapter VI.
(17) B.N. Figgis, «Introduction to Ligand Fields», Interscience Publ, New York, N.Y. 1966, pp. 226-283.
(18) J. Reedijk, Inorg. Chim. Acta, 3, 517 (1969).
(19) B.N. Figgis and J. Lewis, «The magnetic Properties of Transit-ion Metal Complexes» in F.A. Cotton, «Progress in Inorganic Chemi-stry», Vol. 6, p. 154-204.
(20a) J.J Salzmann and H.H. Schmidtke, Inorg. Chim. Acta, 3, 207 (1969).

Peyronel, Pellacani, Pignedoli, Benetti | Tetramethyl and Tetraethyl-Dithiooxamide with Mn", Fe", Co", Ni" and Cu"

Table III. Infrared bands (cm⁻¹) and magnetic moments (B.M.)

Compound	v(CN)	v(CS)	ν(M X)	v(MS)	def.(MSC)	δ (XMX) δ (MX)				Ligar	d bands				Щи В.М.**
Met.D	1528vs.b	828m					520w	434m	373m	310vs	225w	176m	108m	72s	
Fe(Met_D) ₁ (ClO ₄) ₂	1558vs.b	813m		334s 267s	182-163vs.b		513w	428m	378m	312vs			115mb	80s	5.25
Fe(Met,D),(FeCL),	1550vs.b	818s	380vs	334m 268w	166s	139s	514w	430m		318m			100w	75s	5.74*
Co(Met_D).(ClO_)	1565vs.b	813m		339m 265w	167s		518w	436m	377m	314m			80-1	00mb	4.77
Ni(Met.D) ₂ (ClO ₂)	1561vs.b	813m		335m 270m	194-175vs.b		518w	434m	374m	317s			107s	89s	2.96
Cu(Met.D) ₂ (ClO ₂)	1573vs.h	814m		367m										••••	
		••••		340s 246m	186s		508w	431m	377m	310s	224w		80-1	15sh	1.86
Cu(Met ₁ D)Cl ₂	1576vs.b	814m	300s.b 290s.b	362m 335sh	152ms	125ms	508w	431m	378w	318s	226w		105w	85ms	1.95
Cu(Met ₄ D)Br ₂	1560vs.b	808 w 822 w	236s	360w 340m	155m	110m	503w	423m	378w	317s	•••		111m	86m	1.76
ELD	1499vs.b	870m					485w	407s	365m	343m	292ms	197ms		77ms	
Mn(Et.D) ₁ (ClO ₁) ₁	1544vs.b	858ms		254s	1755		498w	407s	374m	348m	298m			80ms	5.78
Fe(Et,D),(ClO ₄)	1544vs.b	858ms		256s	150s		498w	406s	374m	348m	301m			80mb	5.17
Fe(Et,D),(FeC),)	1532vs.b	855ms	378vs	258m	165s	137s	493w				296m			80mb	5.31*
Co(ELD),(ClO_)	1546vs.b	859ms		254s	156s		498w	405s	373m	347m	302m			80mb	5.21
Ni(Et.D).(ClO ₄)	1545vs.b	860ms		254s	1855		500w	404s	367m	345m	300m			80mb	3.29
Cu(Et.D),(ClO ₄),	1545vs.b	861ms		250s	200w		498w	404s	352m	348m	302m			90mb	1.87
Cu(Et.D)Cl	1563vs.b	853ms	309 vs.b	320sh	153m	136m	502w	405s	363 w		290sh			90mb	1.86
Cu(Et ₁ D)Br ₂	1558vs.b	851ms	230s	303s	156m	122m	506w	406s	360w			•••			1.84

(**) General $\mu(B.M.)$ range for high spin octahedral complexes (16): $Mn^{11} = 5.8-6.1$; $Fe^{11} = 5.2-5.8$; $Co^{11} = 4.6-5.4$; $Ni^{11} = 2.8-3.4$; $Cu^{ii} = 1.7 \cdot 2.0$. (*) Values obtained by correcting the susceptibility of the complexes for $\chi_m FeCl_s = 14500$ (17).

are rather independent of temperature, in the range explored (Figure 1B), except for the complexes of Fe^{II} and Co¹¹, having T ground terms; for these ions a still more marked temperature dependence is expected at lower temperatures.^{20a,b} Their $\mu(\theta)$ values are much more constant in the temperature range explored. For the nickel complexes the susceptibilities measured at different temperature were corrected for the temperature independent paramagnetism, t.i.p. = $8N\beta^2/10Dq$,²¹ by using the Dq values obtained for the solids (Table IV). The calculated values of the t.i.p. are: $232 \times$ 10^{-6} and 241×10^{-6} c.g.s. mole⁻¹ for the Met₄D- and Et₄D-complex respectively. The new intercepts in the plots of $1/\chi_m$ versus T are $\theta = -16^\circ$ and 0° for the two complexes respectively. The plot of the corresponding new values of μ_{eff} versus T are given for comparison as dashed lines in Figure 1B. The copper perchlorate complexes do not follow the Curie law in the temperature range 100-300°K.

The large difference in the µ values of cobalt Met₄-D- ($\mu_{eff} = 4.77$, $\mu(\theta) = 4.74$ B.M.) and Et₄D-complex $(\mu_{eff}=5.21, \mu(\theta)=5.34 \text{ B.M.})$ could be due to the greater deformation from the octahedral symmetry in the Met₄D complex. An axial distortion will produce lower magnetic moments for T terms, since the splittings are of the same order of magnitude as those due to spin-orbit coupling.²¹ The low μ value of the (Met₄D, Co) complex cannot be ascribed to spin isomerism since its susceptibility follows the Curie law.

Infrared Spectra (Table III). The very strong band in the region of 1500 cm⁻¹ and the medium band at about 800 cm⁻¹ in thioamide ligands were considered to correspond predominantly to $\nu(CN)$ and $\nu(CS)$ frequencies, respectively.^{22,23,24} Subsequent to a mesomeric delocalization of the type $\vec{N} - C = \vec{S}$ the v(CN) and v(CS) frequencies are increased and decreased, respec-

(1967) (24) C.N.R. Rao, «Chemical Applications of Infrared Spectroscopy», Academic Press, New York, N.Y. 1963, p. 300-303. tively. The formation of metal-sulphur bonds results in an increase of such delocalization.

From the observed values of these frequencies it appears that Met₄ D (ν (CN)=1528, ν (CS)=828 cm⁻¹) has a greater electron delocalization from nitrogen to sulphur than Et₄D (ν (CN)=1499, ν (CS)=870 cm⁻¹). Met₄D seems, therefore, to be a stronger sulphur-co ordinating ligand; it gives the presumably planar fourcoordinated complex Cu(Met₄D)₂(ClO₄)₂, while Et₄D gives the corresponding octahedral complex Cu(Et₄D)₃- $ClO_4)_2$. The increasing of $\nu(CN)$, (30-60 cm⁻¹) and the decreasing of $\nu(CS)$ (10-20 cm⁻¹) frequencies observed in all the complexes confirm a metal-sulphur coordination.6

The difference (16 cm⁻¹) between the ν (CN) frequencies observed for the chloro- and bromo- CuMet₄-DX₂ complexes could depend on the more electronegative character of chlorine, according to the mesomeric shift $R_2N = C - S - M - X$. The presence of only the v_3 (1070-1100 cm⁻¹) and v_4 (611-622 cm⁻¹) bands in all the perchlorate complexes confirms that this ion is not coordinated to the metal.6,25

In the infrared spectra, below 500 cm⁻¹, almost all the bands of the ligands are observed in the complex and the very few distinct new bands can be assigned to complex modes.

The strong bands of M(Et₄D)₃(ClO₄)₂ and the medium band of the Fe(Et₄D)₃(FeCl₄)₂ complexes observed at 258-250 cm⁻¹ may be assigned to $\nu(MS)$ modes, as were those observed at 227-205 cm⁻¹ for the octahedral complexes $NiTu_6(NO_3)_2$ and MTu_4X_2 (M=Mn, Fe, Co, Ni).²⁶ An increased frequency in this band seems likely as the chelating ligand Et₄D is stronger than the thiourea; moreover, this frequency in octahedral complexes must be lower than those (>300)cm⁻¹) observed in planar or tetrahedral complexes with other stronger ligands.

The two weaker and broader bands, observed at 339-334 and 270-265 cm⁻¹ for the $M(Met_4D)_3(ClO_4)_2$, $Fe(Met_4D)_3(FeCl_4)_2$ and $Cu(Met_4D)_2(ClO_4)_2$ complexes, can be assigned to two different v(MS) modes. In the $Cu(Met_4D)_2(ClO_4)_2$ complex the two ligand mole-

⁽²⁰b) B.N. Figgis, J. Lewis, F.E. Mabbs, and G.A. Webb, J. Chem. Soc. (A), 1967, 442.
(21) A. Earnshaw, «Introduction to Magnetochemistry», Academic Press, New York, 1968, p. 69.
(22) T.A. Scott Jr. and E L. Wagner, J. Chem. Phys., 30, 465 (1959).
(23) H.O. Desseyn and M.A. Herman, Spectrochim. Acta, 23A, 2457

⁽²⁵⁾ B.J. Hathaway and A.E. Underhill, J. Chem. Soc., 3091 (1961), (26) D.M. Adams and J.B. Cornell, J. Chem. Soc., 884 (1967).

Table IV. Electronic spectra of Mn^{II} , Fe^{II} , Co^{II} , Ni^{II} and Cu^{II} complexes of Met D and Et D *

Mn(Et ₄ D) ₃ (ClO ₄) ₂			[*] A _{ig} → [*] T _{ig} (G)	\rightarrow $^{4}T_{2g}(G)$			Dq	В	β
	Solid	•••	10500-1-(0.15)	22220 (0.04)	•••	•••	•••	• • •	•••
Fe/Met D) (CIO)	Solution	•••	18520sh(0.15)	JT	•••	C T	•••	• • •	
re(mettD)3(C104)2	Solid	6730ch(0 16)	$1_{2_6} \rightarrow E_6$	11630 (0.01)		20000 (0.78)	790	750	0.81
	Solution	6760sh(12)	7940 (16)	11760 (3)		21740 (445)	790		
Fe(Met ₄ D) ₃ (FeCl ₄) ₂	Jointion	0/00311(12)		11/00 (0)					
	Solid	6620sh(0.15)	7840 (0.21)		•••	20000 (0.79)	780		
	Solution		8130 (14)	13700sh(8)		21280sh(950)	810	• • •	
$Fe(Et_4D)_3(ClO_4)_2$			7410 (0.71)	11770 20.07		10070 (0.04)	740	740	0.01
	Solid	6330sh(0.23)	7410 (0.31)	11770 (0.03)	•••	188/0 (0.94)	740	/40	0.81
Fe(Ft,D),(FeCl.)	Solution	6450sh(13)	/810 (19)	11770 (2)	•••	22990sn(1050)	760	• • •	•••
	Solid	6620sh(0.26)	7810 (0.33)			19610sh(0.58)	780		
	Solution	6450sh(14)	7870 (20)	13610sh(11)		21510sh(1067)	790		
$Co(Met_4D)_3(ClO_4)_2$	oordinosi	'T ₁ ,→'T ₂ ,(γ ₁)	\rightarrow $^{4}A_{2s}(\nu_{2})$	\rightarrow $T_{1*}(P)(v_3)$		С.Т.			
	Solid	7250 (0.31)		15870 (0.56)	16810sh(0.56)	21280sh(0.93)	820	640	0.66
	Solution	7020 (24)	14840sh(67)	15550 (96)	16980sh(83)	22990sh(2000)	790	630	0.65
$Co(Et_4D)_3(ClO_4)_2$	~				16010 1 (0 70)			67 0	
	Solid	6850 (0.29)	14710-1 ((0)	15460 (0.50)	168 IUSD(U.38)	21510sh(1.10)	770	630	0.65
NE(Mat D) (CIO)	Solution	6940 (29)	14/10sn(00)	15480 (107)	100/0 (//)	22990sh(2550)	/90	030	0.05
$N((N(0,0))_3(C(0,0)_2)$	Solid	7010cb(0.20)	$A_{2_{IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$		13790 (0.25)	23810 (0.62)	900	560	0 54
	Solution	7690sh(38)	8770 (54)	12200sh(30)	13510(65)	24390 sh(4720)	880	560	0.54
Ni(Et.D) ₂ (ClO ₂) ₂	bolution	70903h(50)	00 (0)	12200311(50)		21550000 (1120)			0.0.
	Solid	7140sh(0.28)	8480 (0.39)		13070 (0.29)	22990sh(1.18)	850	540	0.52
	Solution	7690sh(45)	8700 (70)	12200sh(40)	13420 (70)	24390 (5500)	870	560	0.54
$Cu(Met_4D)_2(ClO_4)_2$	• •		V2	$v_1 + v_3$		C.T.			
	Solid	•••	13330sh(0.45)	17240sh(0.69)	• • •	22220 (1.15)	730	• • •	•••
	Solution	13330 (249) (d-d)		•••	•••	23870 (11870)	• • •	•••	•••
$Cu(Et_4D)_3(ClO_4)_2$	Solid	V2	12350 (0.38)	V ₃ 16260 (0.47)		22220 (127)	710		
	Solution	7330 (0.10) 13330cb(351) (d.d)	12330 (0.36)	10200 (0.43)		23820 (13770)	/10	•••	
Cu(Met ₄ D)Cl ₁	Solution	Vy	V,	N1	C.T.	С.Т.		•••	
ed(interip)en	Solid	11490 (0.56)	14710sh(0.56)	18520sh(1.24)	21280 (1.28)	25640 (1.22)	880		
	Solution	13700 (216) (d-d)			22880 (2330)	•••		• • •	
Cu(Met ₄ D)Br ₂		\mathbf{v}_2	ν	V3	C.T.	С.Т.			
	Solid	11110 (0.48)	15870 (0.97)	18620 (1.10)	22220 (1.39)	25000sh(1.13)	830	• • •	• • •
	Solution	13330 (231) (d-d)			20000 (852)	ć i	• • •	• • •	
$Cu(Et_4D)Cl_2$	Solid		14490 (0.47)	$v_1 + v_3$ 17960-b (0.64)	21510 (1.06)	C.I. 24100-b(1.11)	780		
	Solution	13700 (204) (d d)	(0.43)	17800Sh(0.04)	22940 (2410)	2410050(1.11)	/00	•••	
Cu(Et.D)Br-	Solution	13700 (204) (d-d)	21	N. + N.	C.T.	Ċ.T.			
	Solid		14290 (0.44)	17540sh(0.65)	19610sh(0.76)	23530 (0.90)	770		
	Solution	13330 (349) (d-d)			20040 (1230)				
						:			

* Wave numbers, Dq and B values are given in cm⁻¹. The relative absorbances for the solids and the extinctions for the solutions are given in parenthesis. Assignments given for the first also refer to the following complexes of the same metal. Manganese complex was in solution of DMF; the other complexes were in solution of nitromethane. The relative solid state « extinctions » are only valid and comparable for one single compound. ** Copper transitions are ${}^{2}B_{1}\rightarrow{}^{2}A_{1}(v_{1});\rightarrow{}^{2}B_{2}(v_{2});\rightarrow{}^{2}E(v_{3})$ (27).

cules should be planarly bonded to the metal, probably with weaker axial interactions with other ligand groups of other molecules. It seems likely that such a tetragonal distortion also takes place for the M(Met₄D)₃²⁺ complexes, thus giving two different M–S distances, those in plane being shorter and corresponding to a higher v(MS) frequency, while the other two correspond to longer distances and lower frequencies.

The bands observed at 362-303 cm⁻¹ for the CuLX₂ complexes can also be assigned to v(MS) and not to $\nu(MN)$ modes, since the $\nu(MN)$ bands generally appear at lower frequencies. For instance, in the case of CuX₂ complexes with substituted pyridines 1–2–4 triazole and phenazine,²⁷ which have stronger Cu-N bonds, the $\nu(CuN)$ frequencies lie in the region of 261-234 cm⁻¹. Moreover, this assignment agrees with a planar coordination of CuLX₂ complexes, with shorter Cu-S bonds like those responsible, in the Met₄Dcomplexes, for the $\nu(MS)$ bands in the region of 339-334 cm⁻¹. The strong band observed at 200-150 cm⁻¹ for all the complexes may be assigned to (MSC) deformation modes, as were those observed for the octahedral thiourea complexes²⁶ at 180-172 cm⁻¹.

In the spectra of the FeL₃(FeCl₄)₂ complexes the very strong band at 380 cm^{-1} and the band at 138

(27) D.E. Billing and A.E. Underhill, J. Inorg. Nucl. Chem., 10, 2147 (1968)

cm⁻¹ are, respectively, the γ (FeCl) and δ (ClFeCl) frequencies observed at 388 and 137 cm⁻¹ for the FeCl₄ ion.²⁸ This ion is not coordinated in these complexes.

The strong band of the CuLX₂ complexes observed at 310-290 cm^{-1} for the chlorides and at 236-230 cm^{-1} for the bromides may be assigned to v(CuX) frequencies, as were those observed for the thiosemicarbazide (tsc) complexes $Cutsc_2X_2$ (Cl=312, Br=251 cm⁻¹) by Campbell et al.29 The splitting of the v(CuCl) band, clearly observable in the CuMet₄DCl₂ complex, corresponds to a cis configuration.³⁰ The bands observed at 136-110 cm⁻¹ could correspond to $\delta(CuX)$ frequencies.25

The bands assigned to v(MS) modes do not show a great variation as a function of the metal ion for the same ligand. Very similar v(MS) frequencies have been observed for the octahedral ethyl- and methyl-xanthates of metals of the first transition series: $Cr(etxn)_3 = 361,340 \text{ cm}^{-1}$; $Co(etxn)_3 = 358,340$ cm^{-1} ; $Cr(mexn)_3 = 376,338 cm^{-1}$; $Co(mexn)_3 = 361,342$ cm⁻¹. The v(MS) frequencies of Ni(etxn)₂=383,351 cm^{-1} ; Ni(mexn)₂=383, 360 cm⁻¹ are greater because these complexes are square planar, but of the same

(28) C.A. Clausen and M.L. Good, Inorg. Chem., 9, 220 (1970).
(29) M.J. Campbell, R. Grzeskowiak, and M. Goldstein, Spectro-im. Acta, 1149 (1968).
W. Kitching, C.J. Moore, and D. Doddrell, Inorg. Chem., 9, (300000). chim.

541 (1970)

267

Peyronel, Pellacani, Pignedoli, Benetti | Tetramethyl and Tetraethyl-Dithiooxamide with Mn^{II}, Fe^{II}, Co^{II}, Ni^{II} and Cu^{II}

order of magnitude.³¹ Moreover the complexes here described do not show other bands which could be assigned to v(MS) modes.

Electronic Spectra (Table IV). The spectra of the complex Mn(Et₄D)₃(ClO₄)₂ show a well defined band at 22200 cm^{-1} for the solid and at 18520 cm^{-1} for its solution in DMF. As all the spectra of the complexes of this series show a great similarity both in the solid state and in solution the values of Dq (880 cm⁻¹) and B (770 cm⁻¹) may be calculated from the bands of the solid and the solution (Table IV) by using the Tanabe-Sugano¹⁷ d⁵ diagram; these values are in good agreement with other values given^{17,32} for octahedral Mn-complexes.

The electronic spectra of the FeL₃(ClO₄)₂ and FeL₃-(FeCl₄)₂ complexes are very similar, both in the solid state and in nitromethane solution. Assuming an octahedral symmetry, the two bands in the region of 6000-8000 cm⁻¹ may be considered^{17,33} to be two components of the same band with a doublet structure, representing transitions from the ${}^{5}T_{2g}$ to the ${}^{5}E_{g}$ state, the degeneracy of which has been lifted by the Jahn-Teller effect. The very weak band in the region 11000-14000 cm⁻¹ may, on the basis of the d⁶-Tanabe-Sugano diagram, be assigned to the forbidden ${}^{5}T_{2g} \rightarrow$ ${}^{3}T_{1g}$ transition. Since in the FeL₃(FeCl₄), complexes the band at 13500 cm⁻¹ is disturbed by those of the FeCl₄⁻ ion, the values of B were calculated, from the d⁶-Tanabe-Sugano diagram, only for the two perchlorate complexes. The Dq values were obtained for all the Fe-complexes from 10 $Dq = v({}^{5}T_{2g} \rightarrow {}^{5}E_{g})$. The bands at 19000-23000 cm⁻¹ in the FeL₃(FeCl₄)₂ complexes can be attributed to C.T. bands or to the FeCl₄⁻ ion bands.³³

In nitromethane solution both the CoL₃(ClO₄)₂ complexes show four bands in the region of the d-d transitions. Only the v_1 and the more intense^{33,34} v_3 bands were already assigned for the Et4D complex.6 The weaker shoulder at 14840 for the Met₄D-and at 14710 cm⁻¹ for the Et₄D-complex, not given by Hart et al.⁶ but easily distinguishable in the nitromethane solution spectra, may be assigned to the v_2 transition, owing to the fact that this band is generally very weak³³. The frequencies calculated for v_2 transitions (14910 and 14730 cm⁻¹) from the ratio v_3/v_1 , using the method described by Lever,35 correspond satisfactorily to the observed values. The weak band observed at 16600-17000 cm⁻¹ in both solids and solutions may be assigned to spin-forbidden transitions as pointed out by Lever.³³ The values of Dq and B were calculated by Lever's method.35

Both the NiL₃(ClO₄)₂ complexes, in nitromethane solution, show only the v_1 and v_2 bands. The shoulder observed in both nitromethane solutions at 7690 cm⁻¹ cannot be considered to be suggestive of dissociation, as was indicated by Hart et al.⁶ for the Et₄D complex in nitromethane solution, because it also appears in the solid spectra of both complexes. The v_2 band also has a shoulder at 12200 cm⁻¹, observable

(31) D.M. Adams, «Metal-Ligand and Related Vibrations», E. Arnold Publ., London, 1967, p. 325.
(32) L.C. Nathan and R.O. Ragsdale, *Inorg. Chim. Acta*, 3, 473 (1969).
(33) A.B.P. Lever, «Inorganic Electronic Spectroscopy», Elsevier Publ.
Co., Amsterdam 1968, pp. 295-318
(34) C.J. Ballhausen, «Introduction to Ligand Field Theory», Mc Graw Hill, New York, NY. 1962, p. 256.
(35) A.B.P. Lever, J. Chem. Education, 45, 711 (1968).

in both solutions. The splitting of v_1 and v_2 bands is not due to infrared overtone of the ligands, as shown by their spectra, and may be explained as being due to a distortion of the octahedral symmetry, as was observed in Nipy₄Cl₂ ($\nu_1 = 8500$ and 10900 cm⁻¹; $\nu_2 = 14300$ and 15800 cm⁻¹).³⁶ The ν_3 bands (${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}$ (P)), calculated by Lever's method³⁵ at 21220 cm⁻¹ for the Met₄D- and at 21060 cm⁻¹ for the Et₄D-complex, are masked by the very intense C.T. band at 23000-24000 cm⁻¹. With the same method the Dq, B were calculated. The low values of Dq and B for Co and Ni complexes may be attributed to sulphur coordination.6,33,37

The d-d bands observed in the copper complexes may be tentatively assigned by using the energy level diagram given by Billing and Underhill,²⁷ which relates the reciprocal position of the v_1 , v_2 , and v_3 bands to the increasing tetragonal distortion of the copper complexes. The relative position of the three observed bands seems to indicate that the methyl derivative has a tetragonal distortion greater than that of the ethylderivative. From the band assignment given in Table IV an approximate value of Dq may be obtained from the expression 10 $Dq = v_3 - \frac{1}{2}v_1 - \frac{1}{3}(v_3 - v_2)$. The Dq values of 732 and 712 cm⁻¹ obtained for the two perchlorate complexes are in good agreement with the values of 700-770 $\rm cm^{-1}$ found by Billing and Underhill²⁷ for CuX₂ complexes with substituted pyridines. The Dq values calculated for the CuLX₂ complexes seem to be reasonable, because for both methyl- and ethyl-derivatives they are greater for the chloride than for the bromide, and because, as for all the other complexes, the Dq values are greater for the Met₄D- than for the Et₄D-complexes.

In the nitromethane solutions all the copper complexes give only one band which has a higher frequency for the chloride (13700 cm^{-1}) than for the bromide and perchlorate derivatives (13330 cm⁻¹). This constancy of values, irrespective of the nature of the ligand and of the composition of the solution, seems to indicate the formation of similarly coordinated species in solution.

Conclusions

The following spectrochemical series results from the Dq values obtained for the perchlorate complexes of Fe, Co, Ni, Cu.

		Ni>	Co>	Fe>	Cu	
(Met ₄ D)	solid	900	820	790	730	Dq (cm ⁻¹)
	solution	880	790	790		*
(ELD)	solid	850	770	740	710	*
	solution	870	790	780		»

The values of the Racah parameter B_o, given by Cole and Garrett,³⁸ were used to calculate $\beta = \frac{B}{B_0}$ From the β values the following nephelauxetic series

may be obtained:

		> Ni
(Met ₄ D)	0.66	0.54 β
(Et ₄ D)	0.65	0.52 »

(36) L. Sacconl, «Transition Metal Chemistry», Ed. by R.L. Carlin, Vol. 4, M Dekker Inc., New York, N.Y. 1968, p. 215.

Neither series corresponds to those reported by Figgis.17

The value $\beta = 0.81$ for Fe was calculated from spinforbidden bands, while the other β values (Co, Ni) were obtained from spin-allowed bands, and therefore is not included.

From all observed Dq values the spectrochemical sequence of the ligands proves to be Met₄D>Et₄D, while their nephelauxetic position is practically the same. It has been observed by Pavchovic and Meek³⁹ that the nephelauxetic effect seems to be less sensitive to steric effects than the Dq values. Although the ethyl group is more electron-releasing than the methyl group, this effect is often offset by its larger steric requirements. As pointed out by Nykerk, Elman and Smith,⁴⁰ in six-coordinated complexes steric effects predominate in determining the metal ligand interaction.

Ligand to metal and metal to ligand charge transfer may be distinguished by the way in which their energy changes when the metal or the ligands is altered.33 The observed charge-transfer bands for the

2262 (1967).

solid perchlorate complexes decrease in energy in the sequence:

	Ni	>	Co	>	Fe	
(Met ₄ D) (Et ₄ D)	23.800 23.000		21.300 21.500		20.000 18.900	cm ⁻¹

According to Lever,³³ this sequence should correspond to a metal to ligand charge-transfer band. Since the $M \rightarrow L$ C.T. band for Cu^{II} should have higher energy than Ni^{II} in that sequence it may be that this Cu^{II} band appears at frequencies greater than 24000 cm^{-1} and is masked by halogen \rightarrow metal or $L\rightarrow L^*$ transition bands. The Cu^{II} band at 20000-23000 cm⁻¹ could, in this case, be interpreted as an $L \rightarrow M$ C.T. band, owing to the greater reductibility of Cu^{II} with sulphur compounds.

Acknowledgments. This work received the financial support of the Consiglio Nazionale delle Ricerche of Italy. The far I.R. spectra were recorded in the CNR Laboratory of Ozzano (Bologna) and the magnetic measurements at low temperature were made in the Institute of General Chemistry of Parma Universitv.