Contribution from the Department of Chemistry, University of Idaho, Moscow, Idaho 83843, U.S.A

The Reaction of Dichloro(difluoramino)methanesulfenyl Chloride with Silver(I1) Fluoride

L. M. Zaborowski and Jean'ne M. Shreevel

Received October 31, 1970

Reaction of dichloro(difluoroamino)methanesulfenyl chloride, NF₂CCl₂SCl, with silver(II) fluoride, AgF₂, forms the new compounds, NF₂CCl₂SF and NF₂CCl_{ τ *} SF₃. NF₂CCl₂S(O)F results either from the hydrolysis* of NF₂CCl₂SF₃ or oxygenation of NF₂CCl₂SF. Hydrogen chloride converts NF₂CCl₂S(O)F to NF₂CCl₂S(O)-*Cl quantitatively.*

Introduction

When dichloro(difluoramino)methanesulfenyl chloride, $NF₂CCl₂, SCI,$ is allowed to react with activated anhydrous potassium fluoride' for several days at ambient temperature, complete fluorination, accompanied by molecular rearrangement, to $CF_3N = SF_2$ occurs.³ While excess KF produces $CF_3N=SF_2$ in 70% yield, a 1:1 molar ratio of KF to $NF₂CCl₂SCl$ results in formation of $CF_3N = SF_2$ and unreacted starting material with no intermediate fluorinated species being isolated. Although no rearrangement is possible, Seel and coworkers showed that complete fluorination of Cl,- CSCl occurs with KF at 150° ,⁴ and that intermediate fluorinated compounds CCl_{3-n} F_n SF (n = 0-3) were sufficiently stable at -50° to be observed using nuclear magnetic resonance. At room temperature, rapid rearrangement of $CCl_{3-n}F_nSF$ (n=0-2) to the isomeric sulfenyl chlorides $CCl_{3-n}F_nSCl$ (n=1-3) takes place. Trichloromethanesulfenyl chloride is completely fluorinated to CF_3SF and its dimer, $CF_3SSF_2CF_3$, by HgF_2 at 130°5

Using AgF_2 as the fluorinating agent with NF_2CCI_2 -SCI, we have been able to prepare $NF₂CCl₂SF$ which is stable with respect to isomerization and decomposition in metal at room temperature. Furthermore, fluorination of the methylene chlorines does not occur at ambient temperature. Further reaction of the sulfenyl fluoride with AgF₂ results in preparation of the rather easily hydrolyzed sulfur(IV) compound, NF_z $CCl₂SF₃$, which, in the presence of traces of water or of other oxygen-containing species, quickly is converted into the stable sulfinyl compound $NF₂CCl₂S(O)F$. The latter is obtained also in 25% yield by the oxygenation of $NF₂CCl₂SF$.

$$
NF2CCI2SF + O2 \xrightarrow{Pyrex} NF2CCI2S(O)F
$$

The reaction of $NF₂CCl₂S(O)F$ with gaseous HCl leads to the quantitative preparation of $NF₂CCl₂S(O)Cl$. Yields of the various products seem to be a function of the $AgF_2: NF_2CCl_2\hat{S}Cl$ ratio with larger amounts of the more highly fluorinated material as the ratio approaches three or greater. Freshly refluorinated $AgF₂$ gives rise to the most reproducible results.

Experimental Section

Starting Materials. Silver(H) fluoride was prepared by iluorinating AgF (Ozark-Mahoning) in a Monel vessel at 250-300° for 2 hr. Dichloro(difluoramino methanesulfenyl chloride was obtained from the photolysis of N_2F_4 , CSCl₂ and SOCl₂.³

General Procedures. Gases and volatile liquids were handled in a conventional Pyrex vacuum apparatus equipped with a Wallace and Tiernan mechanical gauge. Gaseous starting materials and purified products were measured quantitatively by PVT techniques. For gas chromatographic separations the column was constructed of 0.25 in. aluminum tubing packed with 20% Kel-F-3 polymer oil (3M Co.) on acid-washed Chromosorb P. Molecular weight measurements were carried out by vapor density techniques with a Pyrex weighing vessel.

Infrared spectra were recorded with a Perkin-Elmer 457 spectrophotometer using a 5 cm gas cell equipped with KBr windows. Fuorine 19 nmr spectra were obtained on a Varian HA-100 spectrometer using trichlorofluoromethane as an internal standard. Mass spectra were run on a Hitachi RMU-GE mass spectrometer at an ionization potential of 70 eV.

 $AgF₂+NF₂CCl₂SCI.$ In a typical reaction, AgF₂ (5 mmol) was added to a 30 ml Monel vessel. The vessel was evacuated and $NF₂CCl₂SCl$ (2 mmol) condensed in at -195° . After warming, the vessel was maintained at 25° for 6-12 hr. The products, $NF₂CCl₂SF₃$, $NF₂CCl₂SF, NF₂CCl₂S(O)F, Cl₂, SOF₂, and FN = CCl₂,$ were found in varying yields depending on the condition and relative quantity of $AgF₂$ used, and the degree of hydrolysis from traces of moisture.

Properties of NF₂CCl₂SF. Dichloro(difluoramino) methanesulfenyl fluoride is a colorless liquid at 25".

⁽¹⁾ Alfred P. Sloan Foundation Fellow.

(2) C.T. Ratcliffe and J.M. Shreeve, Chem. Comm., 674 (1966).

(3) L.M. Zaborowski and J.M. Shreeve, J. Am. Chem. Soc., 92

1665 (1970).

(4) F. Seel, W. Gombler, and R. Budenz, Ang

Zaborowski, Shreeve 1 *Reaction of Dichloro(difluoramino)methanesulfenyl Chloride with Silver(l1) Fluoride*

The experimental molecular weight was found to be 186.7 (calcd 186.0). Two resonances were observed in the ¹⁹F nmr, a triplet (relative areas of $1:1.9:0.9$) at φ 270.0 assigned to the SF fluorine and a broad unresolved peak at φ -52.5 attributed to the NF₂ group. The relative areas of the $NF₂$ and SF resonances were found to be 2.1 and 1 ($J_{F-F}=7.5$ cps). The infrared spectrum (18 torr) is: 1013s, 936s, 906vs, 868s, 840s, 794vs, 630m, 434w cm⁻¹. The following ions are identified in the mass spectrum: $NF_2CCl_2S^+$, $Cl₂CSC1⁺$, $FNC1₂CS⁺$, $NF₂CC1₂⁺$, $Cl₂CSF⁺$, $FNCC1₂⁺$, Cl_2CS^+ , NF₂CCl⁺, Cl₂CN⁺, ClCSF⁺, NF₂CCl⁺, ClSF⁺, $CCIF_2^+$, FNCCl⁺, F₂CS⁺, ClCS⁺, SF₂⁺, SCl⁺, CF₃⁺, CNF_2^+ , FCS⁺, ClCN⁺ (100%), SCN⁺, SF⁺, SO⁺, CCl⁺, NS+, FNC+, CS', HCl+, Cl+.

Anal. Calcd for NF₂CCl₂SF: S, 17.2; Cl, 38.1; F, 30.6. Found: S, 16.4; Cl, 38.0; F, 29.5.

Properties of NF₂CCl₂S(O)F. Dichloro(difluoramino)methanesulfinyl fluoride is a stable colorless liquid at 25". Two resonances were found 'in the 19F nmr, a triplet (relative areas of $1.1: 2.0: 1.1$) at φ 1.3 assigned to the -S(O)F fluorine and a broad unresolved $NF₂$ resonance at φ -48.1. The relative areas of the NF_2 and $-S(O)F$ peaks were found to be 2 and 1. Due to the close proximity of the $-S(O)F$ and the $CCI₃F$ resonances, $SOF₂$ was used as the solvent and lock signal to obtain the coupling constant, $J_{F-F} = 7.5$ cps. The infrared spectrum (13 torr) is: 1268vs, 1026m. 925s, 89Os, 75Ovs, 638w, 509m, 485vw, 411 w cm⁻¹. The following ions were assigned in the mass spectrum: $NF₂CCl₂S(O)F₂⁺, NF₂CCl₂S(O)F⁺,$ $NF_2CCIFS(O)F^+$, $NF_2CCIS(O)F^+$, $FNCCIS(O)F^+$, NF_2 CCl_2^+ , $FNCCl_2^+$, $CFCl_2^+$, NF_2CCl^+ , Cl_2CN^+ , $CClF_2^+$, **cc12+,** FNCCl+ (loo%), SF2+, CR+, CFCl+, S(O)P+, NSF^+ , NF_2C^+ , CSF^+ , $CICN^+$, SCN^+ , SF^+ , CF_2^+ , CCl^+ , SO+, NS+, FNC+, CS+, HCl+, Cl+, NF+.

Anal. Calcd for NF₂CCl₂S(O)F: S, 15.87; Cl, 35.11; F, 28.2. Found: S, 15.81; Cl, 35.17; F, 27.9.

 $HCl + NF_2CCl_2S(O)F$. NF₂CCl₂S(O)F and excess anhydrous HCl were allowed to react at 25" in Pyrex for 4 hr. The products were passed through a -78 ^{*} trap which was found to contain pure $NF₂CCl₂S(O)Cl$. Dichloro(difluoramino)methanesulfinyl chloride is a colorless liquid with 5 mm vapor pressure at 25". The ¹⁹F nmr shows a single broad resonance at φ -50.6. The infrared spectrum (4 torr) is: 1257w, 1219s, 1025m, 930m, 914m, 891m, 85Ovw, 795vw, 635w, 600w, 501m, 455vw. The mass spectrum indicated the following ions: $FNCCl_2S(O)Cl^+$, $NCCl_2SO_2Cl^+$, $NF_2Cl_2CS^+$, $NFCCl_2S^+$, $NF_2CCl_2^+$, $FNCCl_2^+$, NF_2CCl^+ , Cl_2CN^+ , $CClF_2^+$, CCl_2^+ , $SOCl^+$, $FNCCl^+$, CF_3^+ , $S(O)F^{+}$, CFCl⁺, NSF⁺, NF₂C⁺. (100%), CSF⁺, $CICN^+$, CF_2^+ , SO^+ , CCl^+ , FNC^+ , CS^+ , HCl^+ , Cl^+ .

Results and Discussion

The fluorination and rearrangement of $NF_zCCl₂SCl$ to $CF_3N = SF_2$ in 70% yield³ when KF is present at ambient temperature led us to investigate the products obtained when another fluorinating agent, *i.e.*, AgF₂, is used under similar conditions. Silver(I) fluoride is found not to react with $NF₂CCl₂SCl$ at 25° .

When the ratio of AgF_2 to NF_2CCl_2SCl is approxi-

mately 1.7 and an oxygen-free environment is maintained, $NF₂CCl₂SF$ is obtained in 63% yield. It is thermally stable at 25" in metal but glass attack occurs slowly at room temperature, e.g., it is possible to obtain satisfactory molecular weight data using a Pyrex vessel. In this respect, it resembles $i-C_3F_7SF^6$ which is formed in a pyrolysis reaction at 200° and which behaves similarly in glass. By contrast, NF_{2} - $CCl₂SF$ is very much unlike its closer analogues, $CC1_{3-n}F_nSF$, which isomerize rapidly at 25°.⁴ Heating $NF₂CCl₂SF$ at 100° for one hour in Pyrex results in decomposition to SO_2 , $FN = CC1_2$, $SiF₄$ and minor amounts of NF₂CCl₂S(O)F. Excess oxygen and NF₂- CCl_2SF in Pyrex at 25° gives SO_2 , $FN = CCl_2$, SiF_4 and a 25% yield of $NF₂CCl₂S(O)F$. The high upfield shift of the S-F fluorine $(\varphi, 270)$ is typical of such sulfenyl fluorides, e.g., for $FCl₂CSF$, φ 265.⁴ The mass spectrum does not contain a molecule ion as is observed for the sulfenyl chloride but in the infrared spectrum, a very strong band at 794 cm^{-1} may be assigned to the S-F stretch.

Essentially only infrared evidence is available to support the formation of $NF₂CCl₂SF₃$ which is favored by a greater than 3 fold excess of AgF_2 . An infrared spectrum of the product mixture directly from the reaction vessel contained bands, in the S-F region, which are missing in the purified NF₂CCl₂SF and NF_{τ} CCl:S(O)F, and which are reminiscent of those characteristic of $CF₃SF₃⁷ Other -SF₃ compounds have$ also been prepared by the fluorination of sulfur(II)-containing species with AgF_2 ⁸. The presence of NF_2CCl_2 -S(O)F, which is the expected hydrolysis product of $NF₂CCl₂SF₃$ also lends strong support to its preparation in this fluorination reaction.

The quantity of $NF₂CCl₂S(O)F obtained varies great$ ly and is usually low probably due to its subsequent decomposition to $FN = CCl_2$ and SOF_2 catalyzed by unreacted AgF_2 as suggested by the following

 $NF_2CCl_2SCl + AgF_4 \rightarrow NF_2CCl_2SF + NF_2CCl_3SF_3$

$$
NF2CCI2SF3 \frac{H2O}{or MO} NP2CCI2S(O)F
$$

 $NF₂CCl₂S(O)F+AgF_r\rightarrow (NF₂CCl₂S(O)F₂)⁻+AgF⁺$ (1)

 $(NF₂CCl₂S(O)F₂)⁻ \rightarrow (NF₂CCl₂)⁻ + SOF₂$ (2)

 $(NF₂CCl₂)⁻\rightarrow FN=CCl₂+F⁻$ (3)

$$
AgF + F^- \rightarrow AgF_2 \tag{4}
$$

Therefore, the $NF₂CCl₂S(O)F$ produced is a function of the $AgF₂$ concentration as well as the presence of traces of H_2O or other oxygen-containing species. Fokin and coworkers' suggest that difluoraminocarbanions are unstable with respect to loss of fluoride ion to form a $FN = C \leq$ imine. Since we also observe imine formation $(FN=CC)$, with AgF₂, and with KF, equations l-4 may represent a plausible decomposition route.

(6) R.M. Rosenburg and E.L. Muetterties, *Inorg. Chem.*, 1, 756 1962).

(7) C.T. Ratcliffe and J.M. Shreeve, *J. Am. Chem. Soc.*, 90, 5403
1968). (8) W.A. Sheppard, *J. Am. Chem. Soc.*, 84, 3058 (1962).
(8) W.A. Sheppard, *J. Am. Chem. Soc.*, 84, 3058 (1962).
(9) A.V. Fokin, Yu. M. Kosyrev, V

Infrared stretching frequency assignments for $-S=O$ can be easily made in both NF₂CCl₂S(O)F and $NF₂CCl₂S(O)Cl$ at 1268 and 1219 cm⁻¹ since no other activity is present in this region. These values compare well with the $CF₃$ analogues, $CF₃S(O)F$, 1268 and $CF₃S(O)Cl$, 1238 cm⁻¹.⁷

Our attempts to understand the differences in the behavior of the $F_nCl_{3-n}CSCl$ system and its close analogues, $NF₂CCl₂SCl$ and $CF₃CCl₂SCl$, with fluorinating agents are continuing.

Acknowledgments. Fluorine research at the University of Idaho is supported by the National Science Foundation and the Office of Naval Research. We thank Mr. R. A. De Marco for the mass spectra.