Alkyl for hydride exchange between alane-trimethylamine and Group IVB metal alkyls

William G. Feighery and Rein U. Kirss*

Department of Chemlsty, Northeastern Unrversrty, Boston, MA 02115 (USA)

Charles H. Lake and Melvyn Rowen Churchill

Department of Chemrstry, State University of New York at Buffalo, Buffalo, NY 14214 (USA)

(Received October 19, 1993)

Abstract

Reaction of equimolar amounts of $AH_3 \cdot NMe_3$ and $M(CH_2SiMe_3)_4$ in benzene (for $M=Zr$, Hf) led to exchange of all three Al-H bonds for Al-CH₂SiMe₃ bonds and isolation of Al(CH₂SiMe₃)₃. NMe₃. The latter compound **crystallized in the Pi space group,** *a =* **9.535(2),** *b =* **10.913(2), c = 12.273(2) A, (Y= 88.03(l), p = 86.03(l), -y= 86.93(l)",** $U_{\rm D}$ annual metric $\ln 3$, $D_{\rm D}$ = 1.002 g cm⁻³, $Z_{\rm D}$, $D_{\rm D}$, $U_{\rm D}$, $D_{\rm D}$, $D_{$ λ μ ₁ μ ₂ μ ₂ μ ₂ μ ₂ μ ₃ μ ₃ μ ₃ μ ₃ μ ₃ μ ³ μ ³ μ ³ μ ³ μ **Zr(CH,Ph), produced Al(CH,Ph), NMe**

Key words: **Crystal structures; Zirconium complexes; Hafnium complexes; Alkyl complexes; Aluminum complexes; Hydride complexes**

Introduction

We wish to report the serendipitous observation of the exchange of aluminum-hydrogen bonds for aluminum-carbon bonds in reactions of $\text{AlH}_3 \cdot \text{NMe}_3$ with zirconium and hafnium alkyls (reaction (1)). While this reaction is not a useful procedure for preparation of aluminum alkyls, it is, to our knowledge, only the second example of such an exchange reaction involving aluminum-hydrogen bonds and transition metal-carbon bonds. Exchange of alkyl for hydride ligands in aluminum chemistry is well known [l], while the reaction of alane trimethylamine with mercury alkyls yielded the corresponding aluminum alkyl, elemental mercury and hydrogen as the only example of this reaction involving transition metal alkyls [2].

 $MR_4 + AlH_3 \cdot NMe_3 \longrightarrow AlR_3 \cdot NMe_3 + 'MRH_3'$ (1a)

 $M = Hf$, $R = CH_2SiMe_3$; $M = Zr$, $R = CH_2SiMe_3$, CH_2Ph

 $\text{Cp}_2\text{ZrR}'_2 + \frac{2}{3}\text{AlH}_3 \cdot \text{NMe}_3 \longrightarrow$

$$
{}_{3}^{2}\text{AlR}_{3}\cdot\text{NMe}_{3}+\text{Cp}_{2}\text{ZrH}_{2} \quad \text{(1b)}
$$

R' = Me, CH,SIMe,

Experimental

All compounds described in this work were handled using Schlenk techniques, in an M.I. Braun glovebox under a purified argon atmosphere or on a vacuum line [3]. $ZrCl_4$, HfCl₄ and Cp_2ZrCl_2 were purchased from Strem Chemical Co. and used as received. 1.0 M $LiCH₂SiMe₃$ in hexanes, 1.0 M LiCH₃ in diethyl ether and benzylmagnesium bromide in THF were purchased from Aldrich Chemical Co. Solvents were purified by refluxing over Na/benzophenone (benzene, toluene, tetrahydrofuran, dioxane, diethyl ether, hexane) and distilled prior to use. Deuterated solvents were purchased from Cambridge Isotope Laboratories and dried as described above. $\text{AlH}_3 \cdot \text{NMe}_3$ [4], Cp_2ZrMe_2 [5], $\text{Cp}_2\text{Zr}(\text{CH}_2\text{SiMe}_3)_{2}$ [6], $\text{Zr}(\text{CH}_2\text{Ph})_{4}$ [3b], $\text{Zr}(\text{CH}_2\text{-}$ SiMe_3)₄ [7] and Hf(CH₂SiMe₃)₄ [7] were prepared by literature methods.

¹H and ²⁷Al^{{1}H} spectra were recorded on a Varian 300XL spectrometer in 5 mm tubes equipped with a Teflon valve (J. Youngs). Proton chemical shifts are listed relative to residual protons in the solvent (C_6D_5H) at δ 7.15 ppm). Aluminum chemical shifts are referenced to AlMe₃ at 156 ppm in C_6D_6 . IR spectra were recorded as KBr discs on a Perkin-Elmer 1310 infrared spec-

^{*}Author to whom correspondence should be addressed.

trophotometer. Elemental analyses (C, H) were performed by Galbraith Laboratories and Desert Analytics.

Reaction of Hf(CH₂SiMe₃)₄ with $AlH_3 \cdot NMe_3$

A solution of 33 mg (0.38 mmol) $AH_3 \cdot NMe_3$ in 1 ml of benzene was added to a solution of 198 mg (0.38 mmol) of $Hf(CH_2SiMe_3)_4$ dissolved in 1 ml of benzene at ambient temperature under dry nitrogen. After stirring for 20 min, the solvent was evaporated under vacuum and the crude product transferred to a sublimator in the glove box. Sublimation at 80-90 "C at 10^{-4} Torr yielded 104 mg (80% yield) of white, crystalline, $AI(CH_2SiMe_3)$, NMe₃; m.p. 68–69 °C. ¹H NMR (C_6D_6, ppm) : -0.96 (s, CH_2SiMe_3 , intensity 6H), 0.28 $(s, (CH₃)₃SiCH₂,$ intensity 27H), 1.67 $(s, NMe₃,$ intensity 9H). ²⁷Al(C₆D₆) 171 ppm. IR (KBr): 2955(s), 2890(s), 1405(m, sh), 1345(m), 1250(s), 1100(m), 97O(s, br), 85O(s, br), $750(s, br)$ cm⁻¹. We were unable to obtain an accurate elemental analysis for the compound prepared by this method, hence the product was characterized by single crystal X-ray structure determination. A spectroscopically identical sample of $AI(CH_2SiMe_3)$, NMe, was prepared by addition of NMe₃ to $\text{Al}(\text{CH}_2\text{SiMe}_3)$ ₃ 171 followed by sublimation. *Anal.* Calc. for $C_{15}H_{42}$ AlNSi₃: C, 51.81; H, 12.17; N, 4.04. Found: C, 50.23; H, 11.86; N, 3.49%.

Reaction of 8 mg (0.09 mmol) $AlH_3 \cdot NMe_3$ and 16 mg (0.09 mmol) Hf(CH₂SiMe₃)₄ in benzene-d⁶ in a sealed 5 mm tube produced 'H NMR spectra identical with those obtained from dissolution of the sublimed $AI(CH₂SiMe₃)₃ \cdot NMe₃$.

In a separate experiment, 100 mg (0.19 mmol) $Hf(CH₂SiMe₃)₄$ and 16 mg (0.19 mmol) AlH₃. NMe₃ were stirred under nitrogen at ambient temperature in hexane for 24 h leading to precipitation of a white solid. Filtration under nitrogen yielded 26 mg of white powder after drying under vacuum (76% yield based on HfH₂). *Anal*. Calc. for HfH₂: C, 0.00; H, 1.12. Found: C, 5.21; H, 1.70%.

Crystal structure determination

A single crystal suitable for study by X-ray diffraction was selected from the sublimed $\text{Al}(\text{CH}_2\text{SiM}e_3)$, NMe₃ and mounted in a sealed capillary on a Siemens R3m/ V diffractometer. Data were collected for 6684 reflections over a full sphere of $2\theta = 5-45^{\circ}$, which merged to 3341 independent data with $R(int) = 1.14\%$. Convergence was reached with $R = 7.54\%$ for all 3341 reflections and $R = 4.25\%$ for those 2017 reflections with $F > 6\sigma(F)$. Triclinic Al(CH₂SiMe₃), NMe₃, $C_{15}H_{42}$ AlNSi₃, $M=347.7$, crystallized in the Pl space group, with $a = 9.535(2)$, $b = 10.913(2)$, $c = 12.273(2)$ Å, $\alpha = 88.03(1), \ \beta = 86.03(1), \ \gamma = 86.93(1)$ °, $U = 1271.6(4)$ \mathring{A}^3 , $D_c = 1.002$ g cm⁻³, Z = 2, μ (Mo K α) = 0.217 mm⁻¹, $F(000) = 424.$

Reaction of $Zr(CH_2SiMe_3)$ *, with* $AlH_3 \cdot NMe_3$

In a procedure identical to that described for $Hf(CH₂SiMe₃)₄$ reactions, solutions of 100 mg (0.23) mmol) $Zr(CH_2SiMe_3)_4$ and 20 mg (0.23 mmol) $AlH_3 \cdot NMe_3$ in C_6D_6 were mixed in the glove box in a 5 mm tube. 'H NMR spectra were identical to those for mixtures of $Hf(CH_2SiMe_3)_4$ and $AlH_3 \cdot NMe_3$. After 5 min, a dark precipitate had formed in the tube with no changes in the 'H NMR spectrum of the $AI(CH₂Simel₃ \cdot NMe₃$ product.

Reaction of Cp_2ZrMe_2 *with* $AlH_3 \cdot NMe_3$

A solution of 24 mg (0.27 mmol) $AlH_3 \cdot NMe_3$ in 2 ml of benzene was added to a solution of 100 mg (0.40 mmol) of Cp_2ZrMe_2 dissolved in 3 ml of benzene at ambient temperature under dry nitrogen. Immediate precipitation of a white solid was observed. After stirring for 20 min, the mixture was filtered, yielding 60 mg (68% yield) of white powder after drying under vacuum. *Anal.* Calc. for C,,H,,Zr: C, 53.76; H, 5.41. Found: C, 52.23; H, 5.58%. IR (KBr): Zr-H-Zr 1520, 1300 cm-l identical to the reported spectrum of Cp_2ZrH_2 [8].

The filtrate was dried under vacuum, redissolved in hexane, and cooled ro -78 °C yielding 28 mg (78%) yield) of AlMe₃. NMe₃. ¹H NMR (C₆D₆, ppm): -0.58 (s, AIMe,, intensity 9H), 1.67 (s, *NMe,,* intensity 9H). The NMR was identical to an authentic sample of AlMe₃ NMe₃ prepared from AlMe₃ and NMe₃.

Reaction of 12 mg (0.14 mmol) $AlH_3 \cdot NMe_3$ and 50 mg (0.20 mmol) Cp_2ZrMe_2 in benzene-d⁶ in a sealed 5 mm tube produced a 'H NMR spectrum identical to that observed for $\text{AlMe}_3 \cdot \text{NMe}_3$ above.

Reaction of $Cp_{2}^{*}ZrMe_{2}$ *with* $AlH_{3} \cdot NMe_{3}$

Reaction of 11 mg (0.09 mmol) $\text{AlH}_3 \cdot \text{NMe}_3$ and 50 mg (0.13 mmol) Cp^* ₂ZrMe₂ in benzene-d⁶ in a sealed 5 mm tube at ambient temperature produced no changes in the 'H NMR spectra after 24 h at ambient temperature. Heating the tube to 80 "C for 48 h led to decomposition of the $AH_3 \cdot NMe_3$. The formation of AlMe₃. NMe₃ was not observed under these conditions.

Reaction of $Zr(CH_2Ph)_4$ *and* $AlH_3 \cdot NMe_3$

A solution of 59 mg (0.66 mmol) $\text{AlH}_3 \cdot \text{NMe}_3$ in 5 ml of hexane was added to a solution of 300 mg (0.66 mmol) of $Zr(CH_2Ph)_4$ dissolved in 15 ml of hexane at ambient temperature under dry nitrogen. Immediate precipitation of a black solid was observed. After stirring for 20 min, the mixture was filtered. The filtrate volume was reduced under vacuum and cooled to -78 °C yielding 35 mg (16% yield) of $Al(CH_2Ph)_3 \cdot NMe_3$; m.p. 89-91 "C. lH NMR (C,D,, ppm): 1.40 (s, *NMe,,* intensity 9H), 1.75 (s, CH_2Ph , intensity 6H), 6.90–7.20 (m, CH₂ Ph , intensity 15H). ²⁷Al(C_6D_6): 171 ppm.

Reaction of 10 mg (0.11 mmol) AlH₃ \cdot NMe₃ and 0.50 mg (0.11 mmol) $Zr(CH_2Ph)_4$ in benzene-d⁶ in a sealed 5 mm tube produced 'H NMR spectra identical to the $\text{Al}(\text{CH}_2\text{Ph})_3 \cdot \text{NMe}_3$ observed above.

Results and discussion

Reaction of equimolar amounts of $AlH_3 \cdot NMe_3$ and $Hf(CH₂Sime₃)$, in benzene at room temperature gave a transparent, colorless solution. Evaporation of the reaction mixture and sublimation of the residue at 80-90 °C/10⁻⁴ Torr yielded Al(CH₂SiMe₃)₄ · NMe₃ in 80% yield as a white crystalline solid. No attempt was made to optimize the yield by changing the stoichiometry of the reaction. The structure was determined by single crystal X-ray structure determination (Fig. 1, Table 1). Atomic coordinates are collected in Table 2 with bond lengths and bond angles reported in Tables 3 and 4. The structure of $AI(CH_2SiMe_3)$, NMe₃ is typical for Lewis base adducts of aluminum alkyls. The structure of $\text{Al}(CH_2\text{SiMe}_3)$, NMe₃ can be compared with solid state structures for trimethyl(quinuclidine)aluminum, $\text{AlMe}_3 \cdot \text{NC}_7\text{H}_{13}$ [9], trichloro(trimethylamine)aluminum, $AICI_3 \cdot NMe_3$ [10], as well as the gas phase electron diffraction study of trimethyl- (trimethylamine)aluminum, $AlMe₃ \cdot NMe₃$ [11]. Distances of note include $Al(1) – C(21) = 1.984(3)$, Al(1)-C(31) = 1.984(4), Al(1)-C(41) = 1.989(3) Å (av. Al-C = 1.986 \pm 0.003 Å) and Al(1)-N(1) = 2.058(3) Å. The latter distance is nearly identical to the 2.06 \AA Al-N distance reported for AlMe₃ \cdot NC₇H₁₃ and in between the Al–N distances for AlCl₃ \cdot NMe₃ (1.96 Å) and $\text{AlMe}_3 \cdot \text{NMe}_3$ (2.10 Å). The average Al-C bond distances of 1.986 Å in Al(CH₂SiMe₃)₃. NMe₃ is nearly identical to the Al-C distance in $\text{AlMe}_3 \cdot \text{NMe}_3$ (1.987 A) and shorter than that observed in AlMe₃. NC₇H₁₃

 (2.017 Å) . The C-Al-C angles in Al(CH₂SiMe₃)₃ \cdot NMe₃ are greater than the ideal tetrahedral angle $(C(21) - A(1) - C(31) = 115.3(2), C(21) - A(1) - C(41) =$ 115.9(1), C(31)-Al(1)-C(41) = 115.2(2)°; av. 115.5°) while the C-Al-N angles are all contracted $(C(21) - A(1) - N(1) = 101.9(1), \qquad C(31) - A(1) - N(1) =$ 102.5(1), $C(41)$ -Al(1)-N(1)= 102.6(1)°; av. 102.3°). The C-Al-C and C-Al-N bond angles reflect the the C_{TH}C and CT_H^T bond angles fence the The average C_A Al-C angle of 115.5° in The average C-Al-C angle of 115.5° in
Al(CH₂SiMe₃), NMe₃ is larger than the 114.8° angle in AlMe₃ \cdot NMe₃ and the 113.8° angle in AlMe₃ \cdot NC₇H₁₃. In the latter case, the steric bulk of the quinuclidine ligand acts to compress the C-Al-C bond angle relative to AlMe₃. NMe₃ while in Al(CH₂SiMe₃)₃. NMe₃, the size of the CH_2SiMe , ligand leads to larger C-Al-C bond angles and smaller C-Al-N angles (102.3°) in $\text{Al}(\text{CH}_2\text{SiMe}_3)$, \cdot NMe, versus 104.5° in AlMe₃ \cdot NC₇H₁₃). For comparison, the C-Al-N bond angle in AlMe₃. NMe₃ is 102.3 °C. Other distances of interest include $CH_2-Si = 1.817(4) - 1.848(4)$ Å, Si-C(Me) = 1.828(6)-1.881(4) Å, which are typical for C-Si bonds, and N–C(Me) = $1.477(6)$ – $1.489(5)$ Å. The N–C distance in AlMe₃. NMe₃ was observed to be slighly shorter, at 1.474 A.

When the reaction between $Hf(CH_2SiMe_3)_4$ and AlH₃ \cdot NMe₃ was performed in a sealed tube in C₆D₆, three ¹H NMR signals were observed at -0.96 (s, CH_2SiMe_3 , intensity 6H), 0.28 (s, $(CH_3)_3SiCH_2$, intensity $27H$) and 1.67 (s, NMe₃, intensity 9H) ppm. The trimethylamine protons of $A_1H_3 \cdot NMe_3$ were observed at 2.04 ppm in C_6D_6 while the ¹H NMR resonances of tetrakis(trimethylsilylmethyl)hafnium were observed at 0.18 (s, (CH_3) , $SICH_2$, intensity 9H) and 0.44 (s, $CH₂SiMe₃$, intensity 2H) ppm. A 34 ppm downfield shift in the 27 Al NMR chemical shift (171 ppm) was observed relative to $\text{AlH}_3 \cdot \text{NMe}_3$ (137 ppm). The ¹H NMR spectrum was identical with those obtained from

TABLE 1. Solution and refinement

 $S₁$ direct methods of $\frac{1}{2}$ direct methods of $\frac{1}{2}$ direct methods of $\frac{1}{2}$ Solution

Refinement method full-matrix least-squares

Refinement method full-matrix least-squares Refinement method

Quantity minimized $\sum w(F_o - F_c)^2$ Quantity minimized Σw
Extinction coefficient N/A Hydrogen atoms mathematic scheme method weighting scheme w⁻¹= $\sigma^2(F)$ +0.0010F² Weighting scheme w^{-1}
No. parameters refined 184 **Final** *R* indices (obs. data) (%) **R** = 7.54, $R_w = 6.82$ Final *R* indices (obs. data) (%) $R = 7.54$, $R_w = 6.82$
R indices (6.0 σ data) (%) $R = 4.25$, $R_w = 5.68$ R indices (6.0 σ data) (%) $R = 4$
Goodness-of-fit 1.22 Largest and mean A/a 0.001, 0.000
Largest and mean A/a 0.001, 0.000 Largest and mean Δ/σ (18.29) Data to parameter ratio $18.2:1$
Largest difference peak (e \AA^{-3}) 0.25 Largest difference peak (e \AA^{-3}) 0.25
Largest difference hole (e \AA^{-3}) -0.18

System used Siemens Siemens Siemens Stemmens Stemmens Stemmens Stemmens Stemmens (VMS) rıding model, refined group isotropic U

Fig. 1. Crystal structure of $\text{Al}(\text{CH}_2\text{SiMe}_3)_3 \cdot \text{NMe}_3$.

TABLE 2. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement coefficients ($\AA^2 \times 10^3$)

	x	y	z	$U_{eq}^{\quad a}$
$\text{Al}(1)$	1146(1)	1888(1)	2562(1)	62(1)
C(21)	1552(4)	2216(3)	974(3)	83(1)
$S_1(2)$	2639(1)	3471(1)	412(1)	82(1)
C(22)	2784(5)	3470(4)	$-1125(3)$	131(2)
C(23)	4435(4)	3305(5)	902(4)	153(3)
C(24)	1862(5)	5007(3)	799(3)	123(2)
C(31)	1541(4)	3239(3)	3519(3)	94(2)
$S_1(3)$	2531(1)	3084(1)	4734(1)	84(1)
C(32)	2746(7)	4578(4)	5364(4)	168(3)
C(33)	4309(5)	2433(7)	4361(5)	215(4)
C(34)	1713(7)	2087(5)	5795(4)	191(4)
C(41)	1684(4)	204(3)	3112(3)	82(1)
Si(4)	2725(1)	$-944(1)$	2297(1)	91(1)
C(42)	1810(7)	$-1326(4)$	1070(4)	178(3)
C(43)	4476(6)	$-345(5)$	1858(6)	192(4)
C(44)	3020(6)	$-2423(4)$	3082(4)	139(2)
N(1)	$-1018(3)$	1909(3)	2684(2)	85(1)
C(51)	$-1510(4)$	896(5)	2066(4)	129(2)
C(52)	$-1627(4)$	3083(4)	2239(4)	126(2)
C(53)	$-1543(4)$	1748(5)	3848(3)	123(2)

^a Equivalent isotropic U d orthogonalized U_{μ} tensor.

 α dissolution of the independently prepared, subset of the independent α dissolution of the ind $\text{Al}(\text{CH}_2\text{SiMe}_3)_{3} \cdot \text{NMe}_3$.

The fate of the hafnium was less clear; the stoichiometry for exchange of Al-H for Al -CH₂SiMe₃ groups implies the formation of ' $H_3HfCH_2SiMe_3$ '. With the exception of small amounts of Me₄Si $(0.00$ ppm), ¹H NMR resonances clearly assignable to a new hafnium compound were not observed in mixtures of $Hf(CH_2SiMe_3)_4$ and $AlH_3 \cdot NMe_3$ in sealed tubes. Over a period of several hours, formation of a white pre-

TABLE 3. Bond lengths (A)

Al(1) – C(21)	1.984(3)	Al(1) – C(31)	1.984(4)			
Al(1) – C(41)	1.989(3)	$AI(1)-N(1)$	2.058(3)			
$C(21) - S1(2)$	1.848(4)	$S_1(2) - C(22)$	1.881(4)			
$S_1(2) - C(23)$	1.851(4)	$S_1(2) - C(24)$	1.860(4)			
$C(31) - S(3)$	1817(4)	$S_1(3)-C(32)$	1856(5)			
$S_1(3) - C(33)$	1.837(6)	$Si(3) - C(34)$	1.828(6)			
$C(41) - S(4)$	1836(3)	$Si(4) - C(42)$	1862(6)			
$Si(4) - C(43)$	1.864(5)	$S_1(4) - C(44)$	1.870(4)			
$N(1) - C(51)$	1.477(6)	$N(1) - C(52)$	1.481(5)			
$N(1) - C(53)$	1.489(5)					
TABLE 4 Bond angles (°)						
$C(21) - Al(1) - C(31)$	115.3(2)	$C(21) - A1(1) - C(41)$	115.9(1)			
$C(31) - Al(1) - C(41)$	115.5(2)	$C(21) - A(1) - N(1)$	101.9(1)			
$C(31) - Al(1) - N(1)$	1025(1)	$C(41) - Al(1) - N(1)$	102.6(1)			
Al(1)–C(21)–Si(2)	123.5(2)	$C(21) - S1(2) - C(22)$	110.6(2)			
$C(21)-S1(2)-C(23)$	110 9(2)	$C(22) - Si(2) - C(23)$	1085(2)			
$C(21) - Si(2) - C(24)$	112.1(2)	$C(22) - S1(2) - C(24)$	106.6(2)			
$C(23) - S1(2) - C(24)$	108.1(2)	Al(1)-C(31)-Si(3)	125.8(2)			
$C(31)-S1(3)-C(32)$	112.7(2)	$C(31) - Si(3) - C(33)$	109.2(2)			
$C(32) - S1(3) - C(33)$	106.8(3)	$C(31) - S1(3) - C(34)$	1127(2)			
$C(32) - Si(3) - C(34)$	106.9(2)	$C(33) - S1(3) - C(34)$	108.3(3)			
Al(1)–C(41)–S ₁ (4)	124.1(2)	$C(41) - S1(4) - C(42)$	1112(2)			
$C(41) - Si(4) - C(43)$	109.6(2)	$C(42) - Si(4) - C(43)$	109.4(3)			
$C(41) - S1(4) - C(44)$	112.1(2)	$C(42) - S1(4) - C(44)$	106.2(2)			
$C(43) - S1(4) - C(44)$	108.2(2)	Al(1)-N(1)-C(51)	110.2(2)			
$Al(1)-N(1)-C(52)$	110.8(2)	$C(51) - N(1) - C(52)$	108.5(3)			
Al(1)-N(1)-C(53)	110.1(2)	$C(51) - N(1) - C(53)$	108.3(3)			
$C(52)-N(1)-C(53)$	108.9(3)					

cipitate was observed in the NMR tube. Elemental cipitate was observed in the NMR tube. Elemental analyses of this material were deficient in both carbon and hydrogen for 'H₃HfCH₂SiMe₃' (calc. 17.88% C, 5.25% H) but contained excess carbon to be consistent with a composition HfH₂ (calc. 0.0% C, 1.12% H). Overlapping absorptions in the solution IR spectra of the reaction mixture did not allow for detection of Hf-H IR absorption bands. It is also possible that a redistribution reaction of 'H₃HfCH₂SiMe₃' yielding. $Hf(CH_2SiMe_3)_4$ and HfH_2 is occurring. While the apparent thermal instability of 'H₃HfCH₂SiMe₃' has prevented isolation and characterization of this compound, reaction of Cp_2ZrMe_2 or $\text{Cp}_2\text{Zr}(\text{CH}_2\text{SiMe}_3)$, with AlH₃ · NMe₃ yielded insoluble Cp_2ZrH_2 and $AH_3 \cdot NMe_3$ yielded insoluble Up_2LfH_2 and $\text{AIME}_3 \cdot \text{NMe}_3$ or $\text{AICH}_2\text{NMe}_3$, NMe_3 , respectively (reaction $(1b)$). The products were identified by a combination of elemental analysis, IR and NMR spectroscopy and support the notion of metal hydride intermediates in the reactions of $Hf(CH_2SiMe_3)_4$ with AlH₃·NMe₃. The insolubility of Cp_2ZrH_2 prevented direct spectroscopic identification of the metal-hydride product. δ gentadienyl)zirconium dihyd δ

Bis(pentamethylcyclopentadienyl)zirconium dihydride [12] was reported to be soluble in hydrocarbon solvents, however, no reaction was observed between $Cp_{2}^{*}ZrMe_{2}$ and $AlH_{3} \cdot NMe_{3}$ at ambient temperature. Prolonged heating at 80 $^{\circ}$ C led to changes in the ¹H NMR spectra, however, resonances at 7.46 ppm for Cp^* ₂ZrH₂ were completely absent. Reaction of Zr(CH,SiMe,), with **AlH, .** NMe, in benzene solution ϵ led to the formation of Al(CH,SiMe,), . NMe, as also led to the formation of $AI(CH_2SiMe_3)_3$. NMe₃ as the sole spectroscopically observed product. Formation of a black solid was observed after 5 min of reaction at ambient temperature, possibly from decomposition of an 'H,ZrCH,SiMe,' intermediate. Reaction of of an 'H₃ZrCH₂SiMe₃' intermediate. Reaction of $Zr(CH_2Ph)_a$ with AlH₃. NMe₃ under the same conditions produced a trimethylamine adduct of tribenzyl aluminum and precipitated a black solid.

Supplementary material

Supplementary data on the crystal structure are available from M.R.C.

Acknowledgements

This research was supported by the United States Air Force Office of Scientific Research, AFOSR 91- 0207. Purchase of the Siemens R3m/V diffractometer was made possible by Grant 89-13733 from the Chemical

References

- 1 J.J. Eisch, m G. Wilkmson, F.G.A. Stone and E.W. Abel 2 (eds.), *Comparent Chemrsty, Comparent Chemrsty, and* Chemrsty, *Chemrsty, Chemrsty*, **Chemrsty**, **C** (eds.), Comprehensive Organometallic Chemistry, Vol. 1, Pergamon, New York, 1982, Ch. 6.
- $\frac{2}{\pi}$ D.F. Shriver and M.A. Drezdzon, The *Manipulation of Air*
- \overline{a} *D.F.* Suriver and M.A. Drezuzon, *ine manipulation of All* Sensitive Compounds, Wiley-Interscience, New York, 2nd edn., 1969. J.K. Ruff, Inorg. *Synth, 9 (1967) 30.*
- .
-E. Samuel and M.D. Rausch, J. *Am. Chem. Sot., 95 (1973)*
- 6 M.R. Collier, M.F. Lappert and R. Pearce, J Chem. Sot., *6263.*
- D allon Irans., (1973) 443. **Data**, **Dalton Trans.**
- \overline{a} U.I. Beachley, *C.* Tessier-Toungs, R.U. Hallock, *Inorg Chem.*, 21 (1982) 1970.
- **Chem. Commun., (1909) 1105.**
C.O.D. Whiteher and D.L. Atwood, *J.L. Atmosference* and *J.C.* Atmosference *Chem. Commun., (1969)* 1105.
- 10 D.F. Grant, R.C.G. Killean and J L. Lawrence, *Acta Cays-Chem, 32 (1971) 291.*
- 100g r, Sect **D**, 23 (1909) 377. *the U_{dd}, R.C.O.* **Example** B, 25 (1969) 377.
- $\frac{1}{2}$ Scana, 20 (1972) 1947. *Stand, 26 (1972) 1947.*
- B.M. Manriquez, **D.K.** McAllister, R.D. 38