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Abstract 

Reaction of equimolar amounts of AlH,.NMe, and M(CH,SiMe,), in benzene (for M=Zr, Hf) led to exchange 
of all three Al-H bonds for Al-CHZSiMe, bonds and isolation of Al(CH,SiMe&.NMe+ The latter compound 
crystallized in the Pi space group, a = 9.535(2), b = 10.913(2), c = 12.273(2) A, (Y= 88.03(l), p = 86.03(l), -y= 86.93(l)“, 
U=1271.6(4) A3, D,= 1.002 g cmA3, 2=2, &MO Kc~)=0.217 mm-‘, F(OOO) = 424. Similar reactions between 
AlH3.NMe, and Cp,ZrR, (R=CH3, CH,SiMe,) yielded Cp,ZrHz and AlR,.NMe,. Reaction of AlH,.NMe, with 
Zr(CH,Ph), produced Al(CH,Ph),.NMe,. 

Key words: Crystal structures; Zirconium complexes; Hafnium complexes; Alkyl complexes; Aluminum 
complexes; Hydride complexes 

Introduction 

We wish to report the serendipitous observation of 
the exchange of aluminum-hydrogen bonds for alu- 
minum-carbon bonds in reactions of AlH, eNMe, with 
zirconium and hafnium alkyls (reaction (1)). While this 
reaction is not a useful procedure for preparation of 
aluminum alkyls, it is, to our knowledge, only the second 
example of such an exchange reaction involving alu- 
minum-hydrogen bonds and transition metal-carbon 
bonds. Exchange of alkyl for hydride ligands in aluminum 
chemistry is well known [l], while the reaction of alane 
trimethylamine with mercury alkyls yielded the cor- 
responding aluminum alkyl, elemental mercury and 
hydrogen as the only example of this reaction involving 
transition metal alkyls [2]. 

MR4 + AlH, . NMe, - AlR, . NMe, + ‘MRH,’ (la) 

M = Hf, R= CH,SiMe,; M = Zr, R = CH,SlMe,, CHzPh 

Cp,ZrR; + $AlH, a NMe, - 

R’ = Me, CH,SIMe, 

*AIR,. NMe, + Cp,ZrH, (lb) 

*Author to whom correspondence should be addressed. 

Experimental 

All compounds described in this work were handled 
using Schlenk techniques, in an M.I. Braun glovebox 
under a purified argon atmosphere or on a vacuum 
line [3]. ZrCl,, HfCl, and Cp,ZrCl, were purchased 
from Strem Chemical Co. and used as received. 1.0 M 
LiCH,SiMe, in hexanes, 1.0 M LiCH, in diethyl ether 
and benzylmagnesium bromide in THF were purchased 
from Aldrich Chemical Co. Solvents were purified by 
refluxing over Na/benzophenone (benzene, toluene, te- 
trahydrofuran, dioxane, diethyl ether, hexane) and dis- 
tilled prior to use. Deuterated solvents were purchased 
from Cambridge Isotope Laboratories and dried as 
described above. AlH,. NMe, [4], Cp,ZrMe, [5], 
Cp,Zr(CH,SiMe,), [6], Zr(CH,Ph), [3b], Zr(CH,- 
SiMe,), [7] and Hf(CH,SiMe,), [7] were prepared by 
literature methods. 

‘H and 27Al(‘H} spectra were recorded on a Varian 
300XL spectrometer in 5 mm tubes equipped with a 
Teflon valve (J. Youngs). Proton chemical shifts are 
listed relative to residual protons in the solvent (C,D,H 
at S 7.15 ppm). Aluminum chemical shifts are referenced 
toANe, at 156 ppm in C,D,. IR spectra were recorded 
as KBr discs on a Perkin-Elmer 1310 infrared spec- 
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trophotometer. Elemental analyses (C, H) were per- 
formed by Galbraith Laboratories and Desert Analytics. 

Reaction of Hf(CH2 SiMe,), with AlH, . NMe, 
A solution of 33 mg (0.38 mrnol) AlH, eNMe, in 1 

ml of benzene was added to a solution of 198 mg (0.38 
mmol) of Hf(CH,SiMe,), dissolved in 1 ml of benzene 
at ambient temperature under dry nitrogen. After stir- 
ring for 20 min, the solvent was evaporated under 
vacuum and the crude product transferred to a sub- 
limator in the glove box. Sublimation at 80-90 “C at 
lop4 Torr yielded 104 mg (80% yield) of white, crys- 
talline, Al(CH$iMe,),.NMe,; m.p. 68-69 “C. ‘H NMR 
(C,D,, ppm): -0.96 (s, CH,SiMe,, intensity 6H), 0.28 
(s, (CH&SiCH2, intensity 27H), 1.67 (s, NMe3, intensity 
9H). 27A1(C,D,) 171 ppm. IR (KRr): 2955(s), 2890(s), 
1405(m, sh), 1345(m), 1250(s), 1100(m), 97O(s, br), 85O(s, 
br), 75O(s, br) cm-‘. We were unable to obtain an 
accurate elemental analysis for the compound prepared 
by this method, hence the product was characterized 
by single crystal X-ray structure determination. A spec- 
troscopically identical sample of Al(CH,SiMe,),.NMe, 
was prepared by addition of NMe, to AI(CH,SiMe,), 
171 followed by sublimation. Anal. Calc. for 
C,,H,,AlNSi,: C, 51.81; H, 12.17; N, 4.04. Found: C, 
50.23; H, 11.86; N, 3.49%. 

Reaction of 8 mg (0.09 mmol) AlH,.NMe, and 16 
mg (0.09 mmol) Hf(CH,SiMe,), in benzene-d6 in a 
sealed 5 mm tube produced ‘H NMR spectra identical 
with those obtained from dissolution of the sublimed 
Al(CH,SiMe,),.NMe,. 

In a separate experiment, 100 mg (0.19 mmol) 
Hf(CH,SiMe,), and 16 mg (0.19 mmol) AlH,. NMe, 
were stirred under nitrogen at ambient temperature in 
hexane for 24 h leading to precipitation of a white 
solid. Filtration under nitrogen yielded 26 mg of white 
powder after drying under vacuum (76% yield based 
on HfH2). Anal. Calc. for HfH,: C, 0.00; H, 1.12. Found: 
C, 5.21; H, 1.70%. 

Crystal structure determination 
A single crystal suitable for study by X-ray diffraction 

was selected from the sublimed Al(CH,SiMe,),.NMe, 
and mounted in a sealed capillary on a Siemens R3m/ 
V diffractometer. Data were collected for 6684 reflec- 
tions over a full sphere of 28=5-45”, which merged 
to 3341 independent data with R(int)= 1.14%. Con- 
vergence was reached with R =7.54% for all 3341 
reflections and R= 4.25% for those 2017 reflections 
with F > 60-(F). Triclinic Al(CH,SiMe,),; NMe,, 
C15H42A1NSi3, M=347.7, crystallized in the Pl space 
group, with IL = 9.535(2), b = 10.913(2), c = 12.273(2) A, 
LY= 88.03(l), p= 86.03(l), y= 86.93(l)“, U= 1271.6(4) 
A3, D,= 1.002 g cmw3, 2=2, ~(Mo Ka) =0.217 mm-‘, 
F(OOO) = 424. 

Reaction of Zr(CH,SiMe,), with AlH, .NMe, 
In a procedure identical to that described for 

Hf(CH,SiMe,), reactions, solutions of 100 mg (0.23 
mmol) Zr(CH,SiMe,), and 20 mg (0.23 mmol) 
AIH, . NMe, in C,D, were mixed in the glove box in 
a 5 mm tube. ‘H NMR spectra were identical to those 
for mixtures of Hf(CH,SiMe,), and AlH, .NMe,. After 
5 min, a dark precipitate had formed in the tube with 
no changes in the ‘H NMR spectrum of the 
Al(CH,SiMe,), * NMe, product. 

Reaction of Cp,ZrMe, with AIH, ONMe, 
A solution of 24 mg (0.27 mmol) AlH,.NMe, in 2 

ml of benzene was added to a solution of 100 mg (0.40 
mmol) of Cp,ZrMe, dissolved in 3 ml of benzene at 
ambient temperature under dry nitrogen. Immediate 
precipitation of a white solid was observed. After stirring 
for 20 min, the mixture was filtered, yielding 60 mg 
(68% yield) of white powder after drying under vacuum. 
Anal. Calc. for C,,H,,Zr: C, 53.76; H, 5.41. Found: C, 
52.23; H, 5.58%. IR (KBr): Zr-H-Zr 1520, 1300 cm-l 
identical to the reported spectrum of Cp,ZrH, [8]. 

The filtrate was dried under vacuum, redissolved in 
hexane, and cooled ro -78 “C yielding 28 mg (78% 
yield) of AlMe,. NMe,. ‘H NMR (C,D,, ppm): - 0.58 
(s, AIMe,, intensity 9H), 1.67 (s, NMe,, intensity 9H). 
The NMR was identical to an authentic sample of 
AlMe,’ NMe, prepared from AlMe, and NMe,. 

Reaction of 12 mg (0.14 mmol) AlH, * NMe, and 50 
mg (0.20 mmol) Cp,ZrMe, in benzene-d6 in a sealed 
5 mm tube produced a ‘H NMR spectrum identical 
to that observed for AIMe, .NMe, above. 

Reaction of Cp*2ZrMe2 with AZH, -NMe, 
Reaction of 11 mg (0.09 mmol) AlH, . NMe, and 50 

mg (0.13 mmol) Cp*,ZrMe, in benzene-d6 in a sealed 
5 mm tube at ambient temperature produced no changes 
in the ‘H NMR spectra after 24 h at ambient tem- 
perature. Heating the tube to 80 “C for 48 h led to 
decomposition of the AlH, . NMe,. The formation of 
AIMe,.NMe, was not observed under these conditions. 

Reaction of Zr(CH,Ph), and AIH, . NMe, 
A solution of 59 mg (0.66 mmol) AlH, .NMe, in 5 

ml of hexane was added to a solution of 300 mg (0.66 
mmol) of Zr(CH,Ph), dissolved in 15 ml of hexane at 
ambient temperature under dry nitrogen. Immedrate 
precipitation of a black solid was observed. After stirring 
for 20 min, the mixture was filtered. The filtrate volume 
was reduced under vacuum and cooled to -78 “C 
yielding 35 mg (16% yield) of Al(CH,Ph), . NMe,; m.p. 
89-91 “C. lH NMR (C,D,, ppm): 1.40 (s, NMe,, intensity 
9H), 1.75 (s, CH,Ph, intensity 6H), 6.90-7.20 (m, CHJ’h, 
intensity 15H). 27A1(C6D6): 171 ppm. 



Reaction of 10 mg (0.11 mmol) AlH, . NMe, and 0.50 
mg (0.11 mmol) Zr(CH,Ph), in benzene-d6 in a sealed 
5 mm tube produced ‘H NMR spectra identical to the 
Al(CH,Ph), . NMe, observed above. 

Results and discussion 

Reaction of equimolar amounts of AlH, aNMe, and 
Hf(CH,SiMe,), in benzene at room temperature gave 
a transparent, colorless solution. Evaporation of the 
reaction mixture and sublimation of the residue at 
SO-90 “C/1O-4 Torr yielded Al(CH,SiMe,),- NMe, in 
80% yield as a white crystalline solid. No attempt was 
made to optimize the yield by changing the stoichiometry 
of the reaction. The structure was determined by single 
crystal X-ray structure determination (Fig. 1, Table 1). 
Atomic coordinates are collected in Table 2 with bond 
lengths and bond angles reported in Tables 3 and 4. 
The structure of Al(CH,SiMe,),-NMe, is typical for 
Lewis base adducts of aluminum alkyls. The structure 
of Al(CH,SiMe,),. NMe, can be compared with solid 
state structures for trimethyl(quinuclidine)aluminum, 
AlMe,. N&H,, [91, trichloro(trimethylamine)- 
aluminum, AlCl,.NMe, [lo], as well as the gas 
phase electron diffraction study of trimethyl- 
(trimethylamine)aluminum, AlMe,. NMe, [ll]. Dis- 
tances of note include Al( l)-C(21) = 1.984(3), 
Al(l)-C(31) = 1.984(4 , Al(l)-C(41) = 1.989(3) 8, (av. 
Al-C = 1.986 f 0.003 8, ) and Al(l)-N( 1) = 2.058(3) A. 
The latter distance is nearly identical to the 2.06 8, 
Al-N distance reported for AlMe,. NC,H,, and in 
between the Al-N distances for AU,-NMe, (1.96 A) 
and AlMe,. NMe, (2.10 A). The average Al-C bond 
distances of 1.986 8, in Al(CH,SiMe&-NMe, is nearly 
identical to the Al-C distance in AlMe,-NMe, (1.987 
A) and shorter than that observed in AlMe,. NC,H,, 
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(2.017 A). The C-Al-C angles in Al(CH,SiMe& .NMe, 
are greater than the ideal tetrahedral angle 
(C(21)-Al(l)-C(31) = 115.3(2), C(21)-Al(l)-C(41) = 
115.9(l), C(31)-Al(l)-C(41) = 115.2(2)“; av. 115.5”) 
while the C-Al-N angles are all contracted 
(C(21)-Al(l)-N(1) = 101.9(l), C(31)-Al( l)-N( 1) = 
102.5(l), C(41)-Al(l)-N(l)= 102.6(l)“; av. 102.3”). 
The C-Al-C and C-Al-N bond angles reflect the 
trends observed for the other three Lewis base adducts. 
The average C-Al-C angle of 115.5” in 
Al(CH,SiMe,), eNMe, is larger than the 114.8’ angle 
in AlMe,-NMe, and the 113.8” angle in AlMe,.NC,H,,. 
In the latter case, the steric bulk of the quinuclidine 
ligand acts to compress the C-Al-C bond angle relative 
to AlMe,.NMe, while in Al(CH,SiMe,),-NMe,, the 
size of the CH,SiMe, ligand leads to larger C-Al-C 
bond angles and smaller C-Al-N angles (102.3” in 
Al(CH,SiMe,), eNMe, versus 104.5” in AlMe, -NCH,,). 
For comparison, the C-Al-N bond angle in 
AlMe,.NMe, is 102.3 “C. Other distances of interest 
include CH,-Si= 1.817(4)-1.848(4) A, Si-C(Me) = 
1.828(6)-1.881(4) A, which are typical for C-Si bonds, 
and N-C(Me) = 1.477(6)-1.489(5) A. The N-C distance 
in AlMe,. NMe, was observed to be slighly shorter, at 
1.474 A. 

When the reaction between Hf(CH,SiMe,), and 
AlH, . NMe, was performed in a sealed tube in C6D6, 
three *H NMR signals were observed at -0.96 (s, 
CH,SiMe,, intensity 6H), 0.28 (s, (CH,),SiCH,, intensity 
27H) and 1.67 (s, NMe,, intensity 9H) ppm. The tri- 
methylamine protons of AlH,-NMe, were observed at 
2.04 ppm in C,D, while the ‘H NMR resonances of 
tetrakis(trimethylsilylmethyl)hafnium were observed at 
0.18 (s, (CH,),SiCH,, intensity 9H) and 0.44 (s, 
CH,SiMe,, intensity 2H) ppm. A 34 ppm downfield 
shift in the “Al NMR chemical shift (171 ppm) was 
observed relative to AlH, . NMe, (137 ppm). The ‘H 
NMR spectrum was identical with those obtained from 

TABLE 1. Solution and refinement 

System used Siemens SHELXTL PLUS (VMS) 
Solution direct methods 
Refinement method full-matrix least-squares 
Quantity minimized &(F, - F$ 
Extinction coefficient N/A 
Hydrogen atoms rrding model, refined group isotropic U 
Weighting scheme w-‘=a2(F)f0.0010F~ 
No. parameters refined 184 
Final R indices (obs. data) (%) R = 7.54, R,= 6.82 
R indices (6.0 (T data) (%) R=4.25, R,=5.68 
Goodness-of-fit 1.22 
Largest and mean A/a 0.001, 0.000 
Data to parameter ratio 18.29 
Largest difference peak (e Aw3) 0.25 
Largest difference hole (e A-‘) -0.18 
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Fig. 1. Crystal structure of AI(CH,SIMe,),.NMe,. 

TABLE 2. Atomic coordinates (X 104) and equivalent isotropic 
displacement coefficients (Kx 103) 

x Y z ueqa 

Al(l) 
Wl) 
S,(Z). 

C(22) 
~(23) 

~(24) 
C(3l) 
S1(3) 
~(32) 

C(33) 
C(34) 

C(4l) 
Si(4) 

~(42) 
C(43) 
C(44) 
N(l) 

C(5l) 

CP2) 
C(53) 

1146(l) 

1552(4) 

2639( 1) 
2784(5) 

4435(4) 
1862(5) 
1541(4) 
2531(l) 
2746(7) 

4309(5) 
1713(7) 

1684(4) 
2725(l) 
1810(7) 
4476(6) 
3020(6) 

- 1018(3) 

- 1510(4) 
- 1627(4) 

- 1543(4) 

1888(l) 
2216(3) 

3471( 1) 
3470(4) - 

3305(5) 
5007(3) 
3239(3) 
3084( 1) 
4578(4) 

2433(7) 
2087(5) 

204(3) 
- 944( 1) 

- 1326(4) 
- 345(5) 

- 2423(4) 

1909(3) 
896(5) 

3083(4) 
1748(S) 

2562(l) 
974(3) 

412(l) 
-1125(3) 

902(4) 
799(3) 

3519(3) 
4734(l) 
5364(4) 

4361(5) 
5795(4) 

3112(3) 
2297( 1) 
1070(4) 
1858(6) 
3082(4) 

2684(2) 
2066(4) 
2239(4) 

3848(3) 

Q(1) 
83(l) 

82(l) 
131(2) 
153(3) 

123(2) 

94(2) 
84(l) 

168(3) 

215(4) 
191(4) 

82(l) 

91(l) 
178(3) 
192(4) 
139(2) 

85(l) 
129(2) 

126(2) 
123(2) 

“Equivalent isotropic U defined as one third of the trace of the 
orthogonalized U,, tensor. 

dissolution of the independently prepared, sublimed 
Al(CH,SiMe,),. NMe,. 

The fate of the hafnium was less clear; the stoi- 
chiometry for exchange of Al-H for Al-CH,SiMe, 
groups implies the formation of ‘H,HfCH,SiMe,‘. With 
the exception of small amounts of Me,Si (0.00 ppm), 
‘H NMR resonances clearly assignable to a new hafnium 
compound were not observed in mixtures of 
Hf(CH,SiMe,), and AlH, .NMe, in sealed tubes. Over 
a period of several hours, formation of a white pre- 

TABLE 3. Bond lengths (A) 

Al(l)-C(21) 
Al( l)-C(41) 

C(21)-Sl(2) 

S](2)-C(23) 
C(31)-Sl(3) 
S](3)-C(33) 
C(41)-SI(4) 
Si(4)-C(43) 

N(l)-C(51) 
N(l)-C(53) 

1.984(3) 

1.989(3) 

1.848(4) 
1.851(4) 
1 817(4) 
1.837(6) 
1 836(3) 

1.864(5) 
1.477(6) 

1.489(5) 

Al(l)-C(31) 

A@)-N(l) 
S](2)-C(22) 
S](2)-C(24) 
S](3)-C(32) 
Si(3)-C(34) 
Si(4)-C(42) 

S1(4)-C(44) 

N(l)w52) 

1.984(4) 

2.058(3) 
1.881(4) 

1.860(4) 
1 856(5) 
1.828(6) 
1 862(6) 

1.870(4) 
1.481(5) 

TABLE 4 Bond angles (“) 

C(21)-Al(l)-C(31) 115.3(2) C(21)-Al(l)-C(41) 115.9(l) 
C(31)-Al(l)-c(41) 115.5(2) C(21)-Al(l)-N(1) 101.9(l) 

C(31)-Al(l)-N(3) 102 5(l) C(41)-Al(l)-N(1) 102.6(l) 

Al(l)-C(21)-Si(2) 123.5(2) C(21)-S](2)-C(22) 110.6(2) 

C(Z)-G(2)-C(23) 110 9(2) C(22)-Si(2)-C(23) 108 5(2) 

C(Zl)-Si(2)-C(24) 112.1(2) C(22)-S1(2)-C(24) 106.6(2) 

C(23)-S1(2)-C(24) 108.1(2) Al(l)-C(31)-Si(3) 125.8(2) 

C(31)-S](3)-C(32) 112.7(2) C(31)-Si(3)-C(33) 109.2(2) 

C(32)-S1(3)-C(33) 106.8(3) C(31)-S1(3)-C(34) 112 7(2) 

C(32)-Si(3)-C(34) 106.9(2) C(33)-S1(3)-C(34) 108.3(3) 

Al(l)-C(41)-S1(4) 124.1(2) C(41)-S1(4)-C(42) 111 2(2) 

C(41)-Si(4)-C(43) 109.6(2) C(42)-Si(4)-C(43) 109.4(3) 

C(41)-S1(4)-C(44) 112.1(2) C(42)-Z%(4)-C(44) 106.2(2) 

C(43)-S1(4)-C(44) 108.2(2) Al(l)-N(l)-C(51) 110.2(2) 

Al( l)-N(l)-C(52) 110.8(2) C(51)-N(l)-C(52) 108.5(3) 

Al( 1)-N( l)-C(53) 110.1(2) C(51)-N(l)-C(53) 108.3(3) 

C(52)-N( l)-C(53) 108.9(3) 

cipitate was observed in the NMR tube. Elemental 
analyses of this material were deficient in both carbon 
and hydrogen for ‘H,HfCH,SiMe,’ (talc. 17.88% C, 
5.25% H) but contained excess carbon to be consistent 
with a composition HfH, (talc. 0.0% C, 1.12% H). 
Overlapping absorptions in the solution IR spectra of 
the reaction mixture did not allow for detection of 
Hf-H IR absorption bands. It is also possible that a 
redistribution reaction of ‘H,HfCH,SiMe,’ yielding 
Hf(CH,SiMe,), and HfH, is occurring. While the ap- 
parent thermal instability of ‘H,HfCH,SiMe,’ has pre- 
vented isolation and characterization of this compound, 
reaction of Cp,ZrMe, or Cp,Zr(CH,SiMe,), with 
AlH, . NMe, yielded insoluble Cp,ZrH, and 
AlMe,. NMe, or Al(CH,SiMe,), . NMe,, respectively 
(reaction (lb)). The products were identified by a 
combination of elemental analysis, IR and NMR spec- 
troscopy and support the notion of metal hydride in- 
termediates in the reactions of Hf(CH,SiMe,), with 
AlH, . NMe,. The insolubility of Cp,ZrH, prevented 
direct spectroscopic identification of the metal-hydride 
product. 

Bis(pentamethylcyclopentadienyl)zirconium dihy- 
dride [12] was reported to be soluble in hydrocarbon 
solvents, however, no reaction was observed between 



Cp*2ZrMe2 and AlH,*NMe, at ambient temperature. 
Prolonged heating at 80 “C led to changes in the ‘H 
NMR spectra, however, resonances at 7.46 ppm for 
Cp*2ZrH, were completely absent. Reaction of 
Zr(CH,SiMe,), with AlH, . NMe, in benzene solution 
also led to the formation of Al(CH,SiMe,), . NMe, as 
the sole spectroscopically observed product. Formation 
of a black solid was observed after 5 min of reaction 
at ambient temperature, possibly from decomposition 
of an ‘H,ZrCH,SiMe,’ intermediate. Reaction of 
Zr(CH,Ph), with AlH, . NMe, under the same conditions 
produced a trimethylamine adduct of tribenzyl alu- 
minum and precipitated a black solid. 

Supplementary material 

Supplementary data on the crystal structure are avail- 
able from M.R.C. 
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