An europium(II1) complex as an efficient catalyst for the Michael reaction of α , β -enones with ketene silyl acetals: LIS-NMR analysis for the transition state through complexation between europium(III) catalyst and enones

Masahiro Terada, Takeshi Nakai and Koichi Mikami*

Department of Chemical Technology To40 Institute of Technology Meguro-ku, Tokyo 152 (Japan)

(Received February 28, 1994)

Abstract

The europium(III) complex, Eu(dppm)₃, is found to be an efficient catalyst for the Michael reactions of α,β enones with ketene silyl acetals. The high level of *erythro* selectivity obtained in the reaction of tert-butyl (E) propenyl ketones (2c) with (E) -1-tert-butoxy-1-[(trimethylsilyl)oxy]propene (3d) is rationalized on the basis of the LIS-NMR analysis of the europium(II1) catalyst/enone 2c complex.

Key words: Catalysis; Michael reaction; Lanthanide shift reagent; Europium complexes

Introduction

Lanthanide complexes have been widely used as NMR shift reagents for structural and conformational analysis of the substrate complexed therewith [l]. However, limited cases have been reported in their use as a catalyst for organic synthesis [2], in spite of the high Lewis acidity of the lanthanide nucleus. Therefore, the development of lanthanide complexes as efficient Lewis acid catalysts for carbon-carbon bond formation, in particular, is an attractive and important challenge [3].

Recently, we have found that lanthanide shift reagent, $Eu(dppm)$ ₃ (1)^{**} [4] exhibits an important catalytic activity for aldol reactions of ketene silyl acetals (KSA) $[5]$ [†]. Herein, we wish to report the Michael reaction

(III).

of cyclic and acyclic α , β -enones (2) with ketene silyl acetals (KSA) (3) catalyzed by the Eu(III) complex **(1)** (eqn. (1)). Lanthanide-induced shift LIS-NMR analysis affords information on the transition state of the present catalytic Michael reactions through complexation of the Eu(II1) catalyst/enone (2).

Experimental

General

*Author to whom correspondence should be addressed. **Tris[di(perfluoro-2-propoxypropionyl)methanato]europium- ^tIn our initial study of Eu(III)-catalyzed reactions with α, β -

 $(-)$ -Eu(dppm)₃ (30 wt./vol.% CCl₂FCClF₂ solution) was purchased from Daiichi Kagaku Yakuhin Co. Dichloromethane was freshly distilled from CaH,. 'H NMR and 13C NMR were measured on a Varian EM 390 or JEOL EX-90Q spectrometer. IR spectra were recorded on a JASCO A-102 spectrometer.

unsaturated aldehydes, competitive aldol versus Michael reactions were observed [5a].

Catalytic Michael reaction

To a solution of enone (2) (1.0 mmol) and KSA (3) (1.5 mmol) in CH₂Cl₂ (3 ml) was added a solution of $Eu(dppm)$ ₃ (1) in $CCl₂FCClF₂$ (30 wt./vol.% solution, 0.025 mmol). After stirring for several hours at the indicated temperature, the reaction mixture was quenched with 1% NaHCO₃ solution. The usual workup followed by short-path column chromatography gave the corresponding Michael product (4) as the enol silyl ether form. The resultant silyl enol ether was treated with 1 N HCl / methanol (1:2) mixture to give δ -keto esters.

LIS-NMR analysis

An NMR tube (5ϕ) replaced with N₂ was charged with a freshly distilled enone (2) $(0.15-0.16$ mmol), CDCl₃ (dried over MS 4\AA , 0.6 ml), and tetramethylsilane (0.1%) as an internal standard. The analytically prepared solution of enone was titrated with a solution of $(-)$ -Eu(dppm)₃ in CCl₂FCClF₂ (30 wt./vol.% solution) (ranging from 2.5 to 7.5 mol%) via a Hamilton microliter syringe. The sample was allowed to equilibrate for 10–15 min before measurement.

Results and discussion

The Eu(II1) complex **1** is thus found to be effective for the Michael reaction involving either cyclic or acyclic enones (2). The representative results are summarized in Table 1. (Only a low level of asymmetric induction (up to 6% e.e., Table 1, run 8) was observed in the present catalytic Michael reactions.) The cyclic enones **(2a,b)** are relatively more reactive than the acyclic enones **(2c,d)** in affording the products as the enol silyl ether form [6]* in excellent yield even at lower reaction temperature (runs l-5 versus 6-10). The Eu(lI1) catalyst exhibits a moderate-to-high level of *erythro* selectivity**, except for the enone 2d. It should be noted that the major isomer is always *erythro,* whether the geometry of the KSA is Z or *E.* Of particular interest is the extremely high level of *erythro* selectivity observed with tert-butyl (E) -propenyl ketone (2c), when a sterically bulky KSA $(3d)$ $(R¹=$ tert-butyl) was employed (run 7).

In order to analyze the transition state of the catalytic Michael reactions through complexation of the Eu(II1) catalyst with enones 2, we undertook the LIS-NMR analysis of enones 2. The results of the LIS-NMR

TABLE 1. Eu(III)-catalyzed Michael reactions of enones (2) with KSA $(3)^{a}$

Run ₂		3	Conditions	$(\%)$	Yield ^b erythro/threo ^c
1	2a	OMe OSiMe ₃ 3a (85% E)	-40 °C, 3 _h	100	57:43
2	2a	osi-l OMα 3b (70% Z)	-40 °C, 3 _h	77	62:38
3	2a	∩sí∔ 3c (>95% Z)	-40 °C, 3 _h	85	65:35
4		3 _b	-40 °C, 3 _h	100	59:41
5	2 _b 2 _b	3c	-40 °C, 3 _h	85	57:43
6	2c	Зa	r.t., $1 \, day$	58	66:34
7	2 _c	OBu' OSiMe ₃ 3d (>95% E)	r.t., 1 day	48	95:5
8	2c	OPr OSiMe ₃ 3e $(86\% E)$	r.t., 1 day	74	87:13
9°	Ph	3a	r.t., 1 day	52	50:50
10	2d 2d	3d	r.t., 1 day	40	50:50

^aAll reactions were carried out in 1.0 mmol of 2, 1.5 mmol of 3, and 0.025 mmol of $Eu(dppm)_3$ (1) in CH_2Cl_2 (3 ml). ^bIsolated yield of the δ -keto esters obtained via desilylation of the silyl enol ether products. 'Diastereomeric ratio was determined by ¹H NMR analysis.

analysis of enones **2b,** 2c and **2d** are listed in Table 2. The change in chemical shift $(\Delta \delta)$ for each increment was calculated to give a slope (S) which provides information on the complexation of the Eu(lI1) catalyst with enones 2. For enone 2c, the larger LIS of the β proton (S_{α}) compared to that of the α -proton (S_{α}) indicates that the enone 2c exists in the *s-cis* form [8, 9]. Furthermore, the greater LIS of the β -proton (S_{α}) than that of the β' -proton (S_{β}) suggests that the Eu(III) catalyst would complex to the enone 2c in syn-fashon (A) (Fig. 1), wherein repulsive interaction between sterically demanding Eu(II1) and the bulky tert-butyl moiety would be avoided.

The Eu(III)/2c complex and the KSA **3d** would thus adopt an open chain transition state $T₁$ [10, 6], free from an unfavorable interaction between Eu(II1) and both the methyl and alkoxy $(OR¹)$ moieties of the KSA **(3a, 3d** and 3e) (Fig. 2). The increase of *erythro* selectivity from 3a $(R^1 = Me)$ to 3d $(R^1 = t-Bu)$ via 3e $(R^1 = i-Pr)$

^{*}The stereochemistry of 4 was assigned after desilylation to 6 keto esters through comparison with the literature value [7].

^{**}TO avoid the confusion in discussing diastereoselectivity and complexation, we have decided to employ the Heathcock's 'erythro/threo' convention to define the configuration of diastereomers.

TABLE 2. Slope $(S)^d$ of the observed LIS versus Eu(dppm)₃/ enone Zb, c and d

S^a (Proton)	2Ь	2c	2d
S_{α} (H _a)	2.07×10^{-1}	1.18×10^{-1}	1.39×10^{-1}
S_{β} (H _{$_{\beta}$)}	5.17×10^{-2}	1.64×10^{-1}	1.81×10^{-1}
S_{γ} (H _{$_{\gamma}$})	7.71×10^{-2}	3.47×10^{-2}	4.31×10^{-2}
$S_{\alpha'}$ (H _{α'})	2.22×10^{-1}		
$S_{\beta'}$ (H _{B'})	7.72×10^{-2}	1.01×10^{-1}	1.42×10^{-1}

"Values are derived from the best fit (linear regression) line for a set of data. Units are ppm mol% of $Eu(dppm)₃⁻¹$.

 \mathbb{R}^n 2. \mathbb{R}^n

Fig. 2. Transition states in the Michael reaction of 2c with KSA (3).

(Table 1, run 6versus runs 7 and 8) has some implications for the feasibility of the extended transition states and is well explained by the increased repulsion using the more bulky alkoxy group in $T₂$. A Seebach-like synclinal model for *erythro* selectivity has been suggested (see ref. 11). However, this model is inconsistent with the increased *erythro* selectivity with increase in the steric bulkiness of $OR¹$ which should lead to less coordination with Eu(III) because of the steric repulsion of $OR¹$.

Heathcock and Otera have independently studied diastereoselectivity in the Michael reactions induced by an equimolar amount of Lewis acids such as $TiCl₄ [7]$. They have also reported that *erythro* selectivity is increased by introduction of bulky substituents such as a tert-butyl group on the oxygen or silicon atom of the KSA, particularly in the case using tert-butyl ketone **2c.**

In sharp contrast, the relatively smaller difference between S_β and S_β of enone 2d $(S_\beta/S_{\beta} = 1.27)$ as compared to the larger value of S_{β}/S_{β} , (1.63) of enone 2c implies its rapid equilibrium between syn **(A)** and anti **(B)** complexation (Fig. 1). For the Eu(II1) catalyst/ enone **2d** complex, linear complexation (C=O-Eu bond angle; 180°) is also conceivable [12]. Actually low diastereoselectivity was observed in the Michael reaction with enone **2d** (Table 1, runs 9 and 10). The cyclic enone 2b with a small difference between S_{α} and S_{α} , wherein the $s\text{-}cis$, syn complexation is impossible, reacts with poor diastereoselectivity, as actually observed.

In summary, we have reported that the Eu(II1) complex, $Eu(dppm)$ ₃, can act as an efficient catalyst for the Michael reaction of a KSA showing a similar trend in diastereoselectivity to that obtained in a similar reaction promoted by $TiCl₄$. We have also rationalized the *erythro* diastereoselectivity on the basis of the LIS-NMR analysis of the Eu(II1) catalyst/enone complex.

References

- 1 T.J. Wenzel, *NMR Shif Reagents,* CRC Press, Boca Raton, FL, 1987.
- 2 (a) Hetero Diels-Alder reactions: M. Bednarski and S. Danishefsky, *J. Am. Chem. Soc.*, 105 (1983) 3716; M.M. Midland and R.S. Graham, J. *Am. Chem. Sot., 106 (1984) 4294;* M.M. Midland and R.W. Koops, J. Org. *Chem., 55 (1990) 4647,* 5058; (b) Aldol reactions: A.E. Vougioukas and H.B. Kagan, *Tetrahedron Lett.,* 28 (1987) 5513; K. Takai and C.H. Heathcock, *J. Org. Chem., 50* (1985) 3247; (c) Ene reactions: F.E. Ziegler and S.B. Sobolov, *J. Am. Chem. Soc., 112* (1990) 2749; M.V. Deaton and M.A. Ciufolini, *Tetrahedron Left., 34* (1993) 2409.
- 3 (a) G.A. Molander, *Chem. Rev., 92 (1992) 68;* (b) Cp",YbCl/ TMSCl: L. Gong and A. Streitwieser, J. Org *Chem., 55* (1990) 6235; (c) Ln(OTf),: S. Kobayashi, *Chem. Lett.,* (1991) 2087; Yb(OTf),: S. Kobayashi, I. Hachiya, T. Takahori, M. Araki and H. Ishitani, *Tetrahedron Lett.*, 33 (1992) 6815; Sc(OTf)₃: S. Kobayashi, I. Hachiya, H. Ishitani and M. Araki, Synleft, (1993) 472; (d) Ln,(OR(')),: H. Sakai, T. Suzuki, S. Arai, T. Arai and M. Shibasaki, J. *Am. Chem. Sot., 114* (1992) 4418;

(e) SmI,: P. Van de Weghe and J. Collin, *Tetrahedron Lett., 34 (1993) 3881;* (f) Sm(OR),: Y. Makioka, I. Nakagawa, Y. 34 (1993) 3881; (f) Sm(OR)₃: Y. Makioka, I. Nakagawa, Y. Taniguchi, K. Takai and Y. Fujiwara, J. Org. Chem., 58 (1993) 4771; (g) EuCl₃: F. Bonadies, A. Lattanzi, L.R. Orelli, S. Pesci and A. Scettri, *Tetrahedron Lett., 34* (1993) 7649.

- 4 H. Kawa, F. Yamaguchi and N. Ishikawa, *Chem. Lett.*, (1982) 153. *5* (a) K. Mikami, M. Terada and T. Nakai, J. 0%. *Chem.,* 56
- (1991) 5456; (b) *Tetrahedron Asymm., 2 (1991) 993; (c)* M. (1991) 5456; (b) Tetrahedron Asymm., 2 (1991) 993; (c) M. Terada, J.-H. Gu, D.C. Deka, K. Mikami and T. Nakai, Chem. Lett., (1992) 29; (d) J.-H. Gu, M. Terada, K. Mikami and T. Nakai, *Tetrahedron Lett.*, 33 (1992) 1468; (e) K. Mikami, M. Terada and T. Nakai, *J. Chem. Soc.*, *Chem. Commun.*, (1993) 343. *6* (a) H. Gerlach and P. Kunzer, *Helv. Chim. Actu, 61 (1978)*
- *2503;* (b) T. Mukaiyama, Y. Sagawa and S. Kobayashi, *Chem.* 2503; (b) T. Mukaiyama, Y. Sagawa and S. Kobayashi, *Chem.* Lett., (1986) 1821; (c) S. Kobayashi and T. Mukaiyama, Chem. *Heterocycles, 25 (1987) 205;* (d) S.J. Danishefsky, M.P. Cabal

and K. Chow, *J. Am. Chem. Sot., 111 (1989) 3456;* S.J. Danishefsky and B. Simoneau, *J. Am. Chem. Sot., 111 (1989)* Danishefsky and B. Simoneau, *J. Am. Chem. Soc., 111* (1989) 2599. *7* C.H. Heathcock, M.H. Norman and D.E. Uehling, J. *Am.*

- Chem. Social Chem. Sot., 107 (1986) 2797; **Comment Chem.** Sot., The Chem. Social Chem. Social Chem. Sato, T. Sato, Chem. Soc., 107 (1985) 2797; J. Otera, Y. Fujita, T. Sato, H. Nozaki, S. Fukuzumi and M. Fujita, J. Org. Chem., 57 (1992) 5054. $(1^{332})^{3034}$
- *J. Am. Chem. Sot., 95 (1973) 6367. 9 I.* Naito, A. Kinoshita and T. Yonemitsu, BUN. *Chem. Sot.*
- *Jpn., 49 (1976) 339. 10 D.A. T. A. O.A. C.H. H. H. H. H. H. H. H. Wilen and S.H. Wilen, in E.H. Wilen, in the E.H. Wilen, in the E.H. Wilen, in the E.H. Wilen, in the E.H. Wilen, i*
- (eds.), *Topics in Stereochemistry,* Vol. *19,* Wiley, New York, (eds.), *Topics in Stereochemistry*, Vol. 19, Wilcy, Ncw York, 1989; P. Perlmutter, Conjugate Addition Reactions in Organic $Synthesis$, Pergamon, Oxford, 1992, Ch. 2.
- 11 D. Seebach and J. Golinski, *Helv. Chim. Acta*, 64 (1981) 1413.
- 12 D.J. Raber, C.M. Janks and J.A. Peters, Tetrahedron, 42 (1986) 4347; D.J. Raber, C.M. Janks, M.D. Johnston, Jr. and N.K. Raber, *J. Am. Chem. Soc., 102* (1980) 6594.