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Abstract 

The method of obtaining the transition rate between the initial and final states of the whole system which is usually applied 
to electron transfer reactions is called the two-state delineation. On the other hand, the method of obtaining the transition 
rate by the resonance mechanism between de-excitation of a donor and excitation of an acceptor which is usually applied to 
excitation transfers is called the four-state delineation. We prove that a clear relationship exists between formulas obtained 
by the two-state and four-state delineations. Based on this relationship, we can suggest some erroneous points when one uses 
the two-state delineation for the electron transfer reaction in some molecular systems. 

Keywords: Two-state delineation; Four-state delineation; Energy gap law; Spectral overlap law; Electron transfer reactions; Excitation transfer; 

Non-linear response effect 

1. Introduction 

Intermolecular electron transfer (ET) reactions in 
various molecular environments take place due to a 
weak electrostatic interaction between donor and ac- 
ceptor. In such reactions, at the moment of electron 
transfer, the energy of the initial state of the system 
must coincide with that of the final state. Namely, the 
electron tunneling mechanism works in the ET reaction 

PI. 
Let us denote the initial state of ET as (DA) and 

the final state as (D’A-), where D and A represent 
donor and acceptor, respectively. We schematically write 
the potential energy surfaces as given in Fig. 1. The 
abscissa is a coordinate corresponding to intramolecular 
vibrations of D and A and motions of surrounding 
solvent molecules. Here, the solvent does not only stand 
for polar solvents but also various molecular environ- 
ments including protein media. The multidimensional 
coordinates are expressed as one-dimensional coordi- 
nate for convenience of drawing. The crossing point 
T is the transition state. (In reality, T is the hypersurface 
produced by the crossing of the potential energy surfaces 
of the initial and final states in the multidimensional 
coordinates.) The ET reaction proceeds by thermal 
activation from the minimum 0 of the initial state to 
T and passes through it and relaxes to the minimum 
0’ of the final state. Since it is the transition between 

initial final 
state state 

Intramolecular vibrations of D and A 
and solvent motions surrounding D and A 

Fig. 1. Potential energy surfaces based on the two-state delineation 
for the ET reaction DA-tD+A-. The ET proceeds by way of 
O+T-+O’. 

the two states of the initial and final states, we call it 
the two-state delineation. 

On the other hand, we can also write the potential 
energy surfaces as given in Fig. 2. The abscissa is split 
into two coordinates; one is intramolecular vibrations 
of D and motions of the solvent surrounding D, and 
the other is intramolecular vibrations of A and motions 
of the solvent surrounding A. Strictly speaking, solvent 
motions cannot be separated into the one surrounding 
D and the one surrounding A due to the long range 
character of electrostatic interactions [2]. However, this 
separation will be approximately correct when D and 

0020-1693/94/$07.00 0 1994 Ekevier Science S.A. All rights reserved 

SSDI 0020-1693(94)04046-X 



186 T. ffikitani I Inorganica Chimica Acta 225 (1994) 185-190 

final state 
of donor 
CD’) 

initial state 
of acceptor 
(A) 

l > 

Intramolecular vibrations Intramolecular vibrations 
of D and solvent motions of A and solvent motions 
surrounding D surrounding A 

Fig. 2. Potential energy surfaces based on the four-state delineation 
for the ET reaction DA --) D+A-. The ET proceeds by simultaneous 

transitions of D +D+ and A-A-. 

initial state 
of donor 
CD’) 

\ 

final state 
of acceptor 

\ (A7 / 

resonance 
of donor -.,- 

> > 
Intramolecular vibrations Intramolecular vibrations 
of D and solvent motions of A and solvent motions 
surrounding D’ surrounding A 

Fig. 3. Potential energy surfaces based on the four-state delineation 
for the excitation transfer D*A-+ DA*. The excitation transfer pro- 

ceeds by the resonance transition of D* -+ D and A + A*. 

A are considerably separated in a highly polar solvent. 
In this case, the ET proceeds by the simultaneous 
transitions of D --+ D+ and A-+A- at the points where 
the two transition energies coincide with each other. 
We call this the four-state delineation of the ET reaction. 

The four-state delineation in the excitation transfer 
reaction (D*A) + (DA*) is usually treated by the Fiirster 
mechanism [3]. In this case, potential energy surfaces 
are written as given in Fig. 3. Excitation transfer proceeds 
by the resonance of virtual emission of a photon in 
D* and virtual absorption of a photon in A. 

We can also write the potential energy surfaces for 
excitation transfer in the two-state delineation by re- 
placing (DA) and (D+A-) by (D*A) and (DA*), 
respectively, in Fig. 1. 

The question arises as to the relationship between 
the rate formulas obtained by the two-state and four- 
state delineations. In this paper, we elucidate math- 
ematically the mutual relation of the formulas obtained 
by the two-state and four-state delineations. We discuss 

the significance of the energy gap law in the two-state 
delineation and the overlap law in the four-state de- 
lineation under some specific molecular conditions. 

2. Relation between two-state and four-state 
delineations 

2.1. ET reaction 

First, starting from the two-state delineation, we 
derive the ET rate formula in the four-state delineation. 
The initial (I) and final (F) states of the reaction are 
expressed using a diabatic basis as follows 

R,,(DA) = &(I> QlxdQ2) (1) 

%.@+A-) = h@, Q)x,(Q) (2) 
where Q and x are the electronic and vibrational 
wavefunctions, r, Q, u and ZI are the electronic and 
nuclear coordinates, vibrational states of the initial and 
final states, respectively. These vibrations include the 
solvent motions as well as the intramolecular vibrations 
of donor and acceptor molecules. Using the Fermi’s 
golden rule, the ET rate W,, based on the two-state 
delineation is written as 

WE,= $ CB,~t(~~,,IV,,t~~~)1’6(E,-E,+~) (3) 
u ?J 

where E, and E, are vibrational energies of the u and 
v states, AE is the energy difference between the initial 
and final states, B,, is the normalized Boltzmann factor 

B,=exp(-E,lk,T) 
/ 

x exp(-E,,lk,T) 
u 

(4) 

and V,, and k, are the electrostatic interaction energy 
between donor and acceptor and Boltzmann factor, 
respectively. Applying the Condon approximation, we 
can factorize Eq. (3) as 

WE==AEL~B~~.J(~J~>J”~(E, -L + m) (5) ” w 

where A, is related to the electron tunneling matrix 
element 

and ~(v~~)~’ is the total Franck-Condon factor. 
In the following, we adopt the harmonic oscillator 

approximation for all the vibrations. We classify the 
vibrations into four kinds of modes (qd), (qa), (sd) and 
(sa) which represent quantum modes (q mode) due to 
intramolecular vibrations of donor and acceptor, solvent 
modes (s mode) due to solvent motions around donor 
and acceptor, respectively. Then, we can write the 
vibrational energies as the sum of each class of modes 
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as 

.‘Z, =Eucqdj + ~%a) + Eu(sdj + JR,,,, (7) 

J% = &,dj + L(qaj + &sd) + E,,,,, (8) 

Similarly, the Franck-Condon factor and the Boltzmann 
factor can be written as products 

](+>I’= I(u(qd)l~(qd))12x I@(qa)l~(qa)>]’ 

x IMsd)lW))12 x lW4l~W>l” (9) 
B, =B,(qd~Bu(qa~Bu(sd~Bu(sa) (10) 

Substituting Eqs. (9) and (10) into Eq. (5), we obtain 

IV,,=&, j de, i de2 i d+ 
-m -m --m 

s 
dEqFd(EI)F,(E2)Sd(E3)Sa(Eq) 

X6(AE-E,-E2-Eg-Eq) (11) 

where 

FdteI)= x B,(,,,~~~,I(U(qd)lV(qd))l’S(EI u(M) 
+Eu(qq -&qd)) (12) 

K&2) = y~~BU(qa)y~)l(u(qa)lv(qa))12S(E, 

+ Euw -Cw) (13) 

sd(E3) = ~~~BY(Sd)~~)I(U(sd)jZI(Sd))12~(~~ 

+&z(sd) -f&d)) (14) 

U4 = u~jBucsajv~, I(4s414sa>>12~(~4 

+&,,a, -L,,a,) (15) 

Eq. (11) indicates that IV,, can be expressed by a 
convolution of four kinds of partial Franck-Condon 
factors Fd, F,, s, and s,. 

Integrating Eq. (11) by l ., and putting e3 = E- Q, we 
obtain 

cc 

I+‘,, =A,, 
s 

Fd(e)ya(hE - E) de (16) 
-m 

where 
m 

gd(E) = s Fd(+a(u - E-- ‘%> de, 

-m 

m 

FB,(hE - c) = 
s 

Fa(~2YLW - E- ~2) dc2 

-m 

Here, we put 

(17) 

(18) 

f”d”(c’> = ~d(‘%o - E’> (19) 
f;(d) = F._(E’ -E,,) (20) 

where Ed, is the difference between the zero point 
energy levels of D + and D, and Ea,, is the difference 
between the zero point energy levels of A and A-. 
They are related to AE by 

AE=Ed,,-Eao (21) 

Putting E = Ed, -e’ and substituting Eqs. (19) and 
(20) into Eq. (16) we obtain the ET formula in the 
four-state delineation as follows. 

m 

(22) 

From the definition of Eqs. (19) and (20), we find 
that@,” andfi: represent an electron emitting spectrum 
of donor and an electron inserting spectrum of acceptor, 
respectively [4]. Therefore Eq. (22) states that the ET 
rate is proportional to the overlap of the two spectra 
pd”’ and f!. This is called the spectral overlap law. 

2.2. Excitation transfer 

We can formulate the excitation transfer rate W,, 
in parallel with the ET rate W,, above. We start from 
the two-state delineation based on the 
Born-Oppenheimer representation. We can write W,, 
as 

w,,=A,,~B,~,I(ulv)12S(E,-E,+hE) (23) 
U V 

Here, A+,, is related to the dipole-dipole interaction 
matrix element 

A 
27r 

d-d- - h +h~vd4~h# (24) 

(25) 

where Gd, &, g,, and n are the transition dipole 
moments of donor and acceptor, the distance between 
them and the refractive index of solvent, respectively. 

For the convenience of the following discussion we 
rewrite Eq. (23) as 

W,,=A,l~i,12.11ji,12~BUCI(Ut2,))2~(E, -&+u) 
U V 

(26) 
where AEX is a function of n, R,, and relative orientation 
of vectors fid and Gz,. 
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After a manipulation similar to that above, we obtain 
the formula of the excitation transfer rate in the four- 
state delineation as follows: 

6, =4x s 
--m 

(27) 

where 

%‘) = l&J(~‘)3Kl(&O- 4 (28) 

flb(e’) = I~ialz(O~B,(~’ -&J (29) 

From the definition,fl(e’) represents the fluorescence 
spectrum of donor and fib(e’) the absorption spectrum 
of acceptor [3]. Therefore, Eq. (27) states that the 
excitation transfer rate is proportional to the overlap 
of the two spectra E(E’) and flb(e’). This spectral 
overlap law was first provided by Forster [3]. 

2.3. Physical meaning of the two-state delineation and 
four-state delineation 

Let us consider the physical meaning of the two 
kinds of delineations. 

The formula of Eq. (16) is still based on the two- 
state delineation. On the other hand, we can rewrite 
Eq. (22) of the four-state delineation as 

m 

W&_ =&_ 
s 

Y&Z&,-- &)S,(E -E,,) de’ 
--m 

(30) 

Comparing Eq. (16) with Eq. (30) we find that Eq. 
(16) contains one parameter AZ?, while Eq. (30) contains 
two parameters Ed0 and Eao. That is, one redundant 
parameter is involved in the four-state delineation of 
the ET rate formula. Mathematically, this redundancy 
was introduced by means of Eq. (21). The two factors 
of the integrand of Eq. (30), .Td(E,,-- E’) =fem(e’) and 
Y&E’ -E,,) +:(E’), h ave clear physical meanings. That 
is, by introducing one redundant parameter in the four- 
state delineation, the spectral overlap law of the two 
well-defined spectra could be derived. In contrast to 
this, Eq. (16) is mathematically clear, e.g. the convolution 
of the two Franck-Condon factors of donor and ac- 
ceptor. However, its physical meaning is less clear, i.e. 
the integrand of Eq. (16) is not directly related to the 
observable quantity. 

It will be needless to say that the above discussion 
applies more clearly to the excitation transfer. 

investigate the energy gap law than the four-state 
delineation, because only one parameter AE is involved 
in the former formula. However, the four-state delin- 
eation can be more useful in some cases. In the following, 
we show these concretely. 

For this purpose, we adopt the harmonic vibration 
approximation, and treat the q mode quantum me- 
chanically and s mode classically. In many cases, force 
constants of the q mode and s mode will not change 
significantly between the initial and final states, which 
we treat now. We start from the four-state delineation 
of Eq. (22) or Eq. (30). Putting Ed= E- Ed, we obtain 

m 

WE,_(m) =A,, 
s 

F(c)S(m - E) de (31) 
-m 

where 

(32) 

m 

S(AZz-•)= 
s 

S,(A,Y-E-E,) de3 (33) 
-m 

For simplicity, we consider one kind of q mode and 
s mode for each donor and acceptor. Quantum me- 
chanical calculations for F,(E~) give [2,5] 

1 
Fa(4 = &w,> - exp[ - S,(2fi, + l)] 

XZ,,J(2S,J). [(Va + 1)&p/Z (34) 

with 

(35) 

(36) 

S,=d:l2 (37) 

where Z is the modified Bessel function of the first 
kind, d, a displacement of the normal coordinate be- 
tween the initial and final states of the q mode, (wa) 
the average frequency of the q mode of the acceptor. 
We obtain the same equation for Fd by replacing a 
with d in all the parameters. One can show that only 
when the following equation holds 

(@d) = (4 = (w> 

can F(e) be simplified as [6] 

(38) 

F(E)= ncw> lL-. exp[ - S(2d + l)] -Zc,(Sm)) 

3. Energy gap law 

The ET rate depends on the energy gap hE. This 
phenomenon is called the energy gap law. In most 
cases, the two-state delineation is more convenient to 

x [(ti + l)/$” 

with 

B= [exp(h(w)/k,‘%) - 11-l 

(39) 

(40) 
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p = E/h(W) (41) 

S=d:/2+d:l2 (42) 

Eq. (39) is equivalent to the Franck-Condon factor 
of the q mode which can be obtained by the two-state 
delineation within the one mode approximation. How- 
ever, when ( wd) # (w,) holds, we cannot express F(E) 
by such a simple formula as Eq. (39). In such case, 
the four-state delineation of the q mode with one mode 
approximation is not equivalent to the two-state de- 
lineation with one mode approximation. As long as one 
bases on the two-state delineation, two quantum modes 
are necessary. 

The Franck-Condon factor of the s mode is easily 
obtained as [4] 

sd(E3)= &G&T exp[ - (ti,k:z] (43) 

(Ah,-hE+c+c,)’ 

4A,ks T 1 (44) 

where Ad and A, are the reorganization energies of 
the s mode around donor and acceptor, respectively. 
Substituting Eqs. (43) and (44) into Eq. (33), we obtain 

SC&- 4 = d&T exp 
(A/AJZ+# 

4A,k, T 1 (45) 
where 

A,=A,+A, (46) 

Eq. (45) is equivalent to the Franck-Condon factor of 
the s mode which can be obtained by the two-state 
delineation within one mode approximation. In other 
words, the four-state delineation of the s mode has no 
merit over the two-state delineation as long as the force 
constants are the same between the initial and final 
states. 

Next, we consider other cases when the force constants 
of the initial and final states of the s mode are not 
equal [7]. Such a situation can happen when the charged 
donor or acceptor is strongly coupled with the polar 
solvent and dielectric saturation takes place [8,9]. The 
change of the force constant can be expected in a wider 
range of molecular environments including a protein 
environment [lo]. Therefore, it would be better to call 
this phenomenon the non-linear response. Now, we 
consider the following simple, typical case of the self- 
exchange reaction in the presence of the non-linear 
response effect: 

A-A- AA (47) 

where A- is the donor and A is the acceptor. In this 
case, the energy gap A,?Z is zero. The Franck-Condon 

factor of the s mode 
obtained as [ll] 

“r 

in the four-state delineation was 

S(+=CJ exp(-6 
0 

cosy) cosh(& cash;) 

Xcosh( &q sinhg) dy (48) 

with 

(4% 

(50) 

‘= kT B 
(51) 

k 
p= k,-k, (53) 

where k, and k, are the force constants of solvent 
motion around the neutral and charged reactants, re- 
spectively. When p # CC, the function S(E) becomes 
infinity at E= 0 and decays monotonically as ]E] departs 
from zero. Therefore, S(E) is quite different from the 
Gauss function which is obtained when p = m (or k, = k,) 
holds. 

On the other hand, the Franck-Condon factor of 
the s mode in the two-state delineation with one mode 
approximation becomes Gaussian because the initial 
state is equivalent to the final state as seen in Eq. (47). 
Therefore, the rate obtained by the four-state delin- 
eation becomes quite different from that of the two- 
state delineation [ll]. This fact indicates that when 
the non-linear response effect (k,, #kc) works, the two- 
mode delineation with one mode approximation for 
the s mode leads to an erroneous result and so, at 
least, two modes for the s mode must be incorporated. 

Similarly we can prove that the two-state delineation 
with one s mode is erroneous in the presence of the 
non-linear response effect in general for the charge 
shift reaction [ll] 

A-B- AB- (54) 

for the photoinduced charge separation reaction [7] 

A*B- A-B+ (55) 

and for the charge recombination reaction [12] 

A-B+ - AB (56) 
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4. Discussion Acknowledgement 

We have shown that as long as we consider the ET 
reaction due to a very weak interaction and the excitation 
transfer reaction by the Forster mechanism, both re- 
actions can theoretically be treated by similar formulas. 
The energy gap law which is popular for the ET reaction 
is essentially based on the two-state delineation and 
the spectral overlap law which is popular for the ex- 
citation transfer is based on the four-state delineation. 
However, judging from the results of the present study, 
we can say that the energy gap law of the ET rate 
based on the four-state model becomes more important 
when the non-linear response effect exists and/or the 
average vibrational frequency of the donor differs sig- 
nificantly from that of the acceptor. On the other hand, 
we can say that the energy gap law of the excitation 
transfer will become quite useful when a large change 
of the dipole moment is induced by the excitation of 
A or de-excitation of D* and so a large change of the 
interaction between donor or acceptor and the solvent 
is brought about. In such cases, the energy gap law of 
excitation transfer becomes similar to that of the ET 
reaction; this energy gap law will be quite useful in 
studying the role of the solvent in excitation transfer. 

This work was performed under the support of Grant- 
in-Aids for Scientific Research on Priority Areas (No. 
236) from the Japanese Ministry of Education, Science 
and Culture. 
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