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Abstract 

We investigate basis set effects for the direct calculations of coupling elements for electron transfer reactions. We discuss 
the advantages of direct methods versus indirect methods. Appropriate description of the coupling elements for electron 
transfer reactions at large intermolecular separation requires flexibIe basis sets. 
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1. Introduction 

Theoretical elucidation of electron transfer events 
has been the focus of increasing interest and numerous 
excellent reviews in recent years [ld]. Such interest 
has arisen largely from the increasing ease of calculation 
of such parameters as the electronic coupling element, 
solvent relaxation effects, calculation of reorganization 
energies, etc. Procedures for the calculation of coupling 
elements include simple one particle (either an electron 
or a ‘hole’) [2], pseudo-two particle (both electron and 
hole which may interfere con- or destructively) [3], and 
many particle methods [4], employing extended Hiickel 
[2e-g,4b,l] various ND0 (neglect of differential overlap) 
[4b,d,k] or ab initio [4a-j,m] techniques for the definition 
of electronic states. Methods may be indirect (e.g. change 
in self consistent field calculated total energies (ASCF) 
[2e], Koopmans [5,4b,fl or (less commonly) employ 
direct calculations [4a-j,m]. In all such calculations, 
careful selection of basis sets is necessary to adequately 
describe the system in question. However, as shown 
by Cave et al. [4fl and Newton [4d], to adequately 
define long range interactions (sych as electron transfer 
at distances greater than 5 A), currently available 
Gaussian-type orbital basis sets such as those of Pople 
[6] or Huzinaga [7] must be augmented by diffuse terms. 
Here we carefully consider the addition of basis func- 
tions, both diffuse (s-type) and polarizable (p or d), 
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to a number of symmetric electron transfer systems. 
We also consider the contributions of both one and 
two electron integrals to the overall coupling element 
expression. The indirect methods have within recent 
years been utilized for obtaining information about the 
dependence of the electronic transfer element as a 
function of distance and orientation of the charge 
transfer system [2h-11. 

2. Theory 

SCF calculations on symmetric open shell dimer 
systems can yield solutions of two types: the symmetric 
solution, and the broken symmetry solutions [S], in 
which the odd electron is localized on either the ‘left’ 
or ‘right’ half of the system. The broken symmetry 
solutions can be obtained by removing symmetry re- 
straints, mixing the highest occupied and lowest un- 
occupied molecular orbitals (HOMO and LUMO) to 
yield an unsymmetric distribution of charge density, 
and minimizing the energy. 

The two broken symmetry solutions, corresponding 
to initial and final states ((cli and t,Q of an electron 
transfer event at the avoided crossing, have orbitals 
which are not orthogonal to one another. We therefore 
used the corresponding orbitals method [9] based upon 
a pairing theorem of Liiwdin [lo] to obtain overlaps 
and coupling elements between these two states. Thus, 
in the Hartree-Fock (HF) case we start with two 
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wavefunctions Gi and I,!Q which are defined as non- 
orthogonal Slater determinants of spin orbitals: 

where N, and Np refer to the number of CY and /3 
electrons, respectively, ah is an a-electron creation 
operator, Kj (Kj? refers to the jth molecular orbital 

(MO) of the initial (final) state i (f), and vat refers 
to the vacuum state. The creation operators are written 
in ascending order. The MOs are formed from the 
given basis set of atomic orbitals (AOs). The MOs for 
the initial and final states are given by: 

IK:, j) = a,t, &w) 

/PC, j> = 4, &ac) (2) 

in which a:+ creates an electron with spin x in the kth 
orbital. Thus, the character of the MOs and the overall 
character of the initial and final states are defined by 
our choice of basis sets. Note that the orbitals within 
the spin orbital sets for the given electronic state are 

orthogonal; we then express the non-orthogonality be- 
tween the MOs of the different states by the overlap 
matrix D, whose elements are as follows: 

Q = (K:,jIKk, k) # 61, (3) 

Hereafter the spin state x will not be written, but it 
is understood that (Y and p MOs must be dealt with 
separately. We may then perform unitary transfor- 
mations on the sets of spin orbitals IK’) and IK’): 

II?;) = VIK;) (4) 

and 

Ii_:) = U/K:) (5) 

which leave & and $f invariant except in phase. The 
overlap matrix D is then transformed according to 

(KfjKi) = ;1= U+DV (6) 

The transformation matrices U and V are obtained 
along with the (diagonal) eigenvalue matrix A from the 
equations 

D+DV = VA (7) 

and 

U=DVA-“” (8) 

(It should be understood that U is defined as the 
eigenvector matrix of DDt, and can thus be obtained 
in two ways.) Given that (from Eq. (7)) 

n = v+D+Dv (9) 

it follows that 

2 = U+DV 

= A - I”VD+DV 

= _41/2 
(10) 

which has the required diagonal form. 
The overlap integral between tii and tif is then given 

by 

= (det U)(det V+)jfi3j (11) 

Given the general energy operator Q,, 

R,,=n,+n,+Iln, (12) 

in which R, is the nuclear repulsion operator, fi, is 
the one-electron operator, and 0, is the two-electron 
operator, we can obtain the various components of the 
energy as follows: 

= R,(det U)(det V)jfilij, 

nil)= (det U)(det V+)j$l<k,+@J)k@j&k 

(13) 

(14) 

fig)= (det U)(det V)jTk _~,,j_, 

x (K;lz:lw(1,2)(1 -P,,)@&) (15) 

in which w is the kinetic plus nuclear attraction energy, 
0(1,2) is l/R,, (the distance between the electrons in 
atomic units), and P ,2 is the exchange operator: 

P&k;) = I&k;) (16) 

If we then define 

Hii= ($il%pl$i) 

&= (~fl%&f> 

(17) 

(18) 

and 

Hfi = (+fI%pI 4) w 

the coupling element Tf, (or one half the splitting 
between the symmetric and anti-symmetric solutions at 
the transition state) is given by 

Tfi = 
Hfi - Sfi Hii 

l_Sfi 

This Tfi corresponds to the off-diagonal element in the 
non-orthogonal two-state Cl problem [ll]. 
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The procedure outlined above describes the direct 
calculation of the coupling element between two dif- 
ferent and non-orthogonal electronic states. One of us 
has developed another procedure for direct calculation 
of coupling elements between initial and final states 
for the ET reaction which employs the Liiwdin symmetric 
orthogonalization scheme for taking account of the non- 
orthogonality [4m]. 

The schemes used most frequently for calculating 
the coupling element involve various indirect methods. 
The ASCF method [2e-g] involves the calculation of 
total energies of ground and first excited states at a 
given geometry; the coupling element is then given by 
half the energy difference between the two states at 
the transition state configuration. This total energy 
difference is frequently approximated by the use of 
Koopmans theorem [5], which makes the assumption 
that the spin orbitals in the (Nk 1)-electron states are 
identical with those of the N-electron state. Therefore 
the energy splitting between the two states is approx- 
imated by the difference in energy between the HOMO 
and the LUMO, or the initial MO and the final MO. 

The scheme for indirect calculation of the coupling 
element can be expressed by considering the diabatic 
representation for the electronic wave functions (& and 
&). These wave functions are the broken symmetry 
solutions and represent electronic states where the 
excess electron is either located on the donor ($i) or 
acceptor (&). The adiabatic representation for the 
electronic wave functions are given by the ansatz 

p(Q>=ci(Q)+i(Q) +cdQ>&(Q> (21) 

where Q is the generalized reaction coordinate. The 
energies for the two states in the adiabatic represen- 
tation are obtained from 

H(Q) q(Q) = VQFXQ) (22) 

and making use of Eq. (21) the following secular 
equation is obtained 

( 

Hii-E Hi,- S,,E Ci 0 
H,-S,,E H,-E C, = 0 I() 0 

(23) 

whereS,(Q)=sif(Q>=sif=<~i(Q>IlClf(Q>>,Hjj(Q>=Hjj= 
<+‘+(Q)IH(Q)I&(Q)>, and Hn(Q) =Hif(Q> =Hi,= <(crf(Q>I 
H(Q)\&(Q)>. Th e energies are then given by 

Hii + H,- 2Hi,S,, a 
E(Q)* = 

2(1 -S$) + 2(1-Siz,) (24) 

where 

D = (Hii -H,,)’ + 4[H:- Hi,Si,(Hii + H,) 

+ S$HiiHJ (25) 

Therefore for a given nuclear configuration the energy 
difference between the two adiabatic states is given by 

(26) 

At the transition state configuration Q*, the diabatic 
energy surfaces cross and Hii = H,(Q*); then D is 
reduced to 4(HiXQ*)-Si,(Q*)Hii(Q*))‘, and the energy 
splitting is given by 

(27) 

where Hia Sir, and Hii are all evaluated at Q*. It is 
clearly seen from Eqs. (25)-(27) that the energy splitting 
is equal to twice the coupling element for the ET 
reaction at only those nuclear configurations at which 

Hii =HdQ), i.e. the transition state configuration(s). 
For the indirect calculations it is extremely important 
to use the approximate calculation for the difference 
in total energy given in Eq. (27) only at the appropriate 
nuclear configuration; otherwise, it is necessary to em- 
ploy the full expression for D as seen in Eq. (25). The 
location of the transition state is given by the topology 
of the energy surfaces and not by the model concept 
that the transferring electron should be distributed 
equally between the donor and acceptor sites. This 
model concept was introduced by Marcus for simplifying 
the statistical mechanical calculations, but it is not 
necessarily valid for the more detailed electronic de- 
scriptions. It is true that this model works well for 
symmetric systems, and for large systems it is a practical 
method for the determination of the appropriate nuclear 
configuration for indirect methods. Nevertheless, in- 
direct methods remain highly inaccurate and the direct 
methods offer clear advantages. Direct methods simply 
require some non-standard techniques and implemen- 
tation of computer code and assumes that the reacting 
system is approximated by a linear combination of two 
Slater determinants. 

3. Calculational details 

Wavefunctions for the various systems under study 
were obtained through the use of the Gaussian 88 
series of programs [12]. Basis sets used included Pople’s 
21G and 31G sets for H and He [6c,d,fl, with and 
without added p or diffuse s [13] functions (see below), 
and Pople’s 6-31G set for 0 [6d,e], with and without 
added d or diffuse sp [13] functions (see below). In 
all cases the ground state of the fully symmetric system 
was calculated. All symmetry restrictions were removed, 
and slight mixing of the HOMO and LUMO before 
the SCF iterations yielded localized results as long as 
the distances between the ‘right’ and ‘left’ portions 
were sufficiently large ( > 3 A). We restricted out studies 
to fully symmetric systems in which the right and left 
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halves differed only in charge density. The geometries 
used for the bimolecular systems (HAY and [H,O],‘J 
were obtained from geometry minimizations at 5.0 A 
(using Pople’s 6-31G b asis), with the constraint that 
both molecules have equivalent geometries (maintaining 
at least C,, symmetry). 

Note that Gi and lcIf for an unsymmetric system must 
be obtained by two separate calculations. However, as 
we have constrained our systems to be of at least C, 
symmetry, the initial and final electronic states are 
mirror images of one another. Therefore, only one 
calculation was needed to obtain the MO coefficients, 
and our computation time was reduced by half. 

4. Results and discussion 

4.1. He,’ 

The first and simplest system we studied was the 
three-electron He,’ system. Our results are shown in 
Fig. 1. Five different basis sets were used over the 
internuclear separation range 3-9 A: Pople’s 21G, 31G, 
31G+p (y=l.l)l31G+s (y=O.O4)‘and 31G+s, p and 
one centered (‘c’) s-type ‘ghost’ orbital (y,=O.3129, 
y,,= 0.3541, y,=O.O3555; coefficients chosen to yield a 
minimum energy at 5.0 A) [6c,d,fl. Fig. l(a) and (b) 
shows overlaps and coupling elements, respectively, 
between initial and final states over the indicated range 
of internuclear separations. Note that each basis set 
save the last (31G +spc) has a limited range in which 
results are reasonable. For the 21G, 31G and 31G+p 
sets, such limited range is the result of basis functions 
whose tails (at large distances) have amplitudes which 
do not decay in a regular fashion, yielding spurious 
data. The 31G-t s, on the other hand, seems to yield 
reasonable results at separations greater than 7 A; 
however, there is a node at close to 6 8, at which both 
the overlap and coupling terms drop suddenly to 0. 
This occurs because of a negative coefficient on the 
diffuse function for the unoccupied site (at distances 
greater than 5.5 A) which is larger than the sum of 
the positive coefficients for the other s functions on 
that site. This results in a wavefunction with a large 
positive charge density on one site, and a small negative 
charge density on the other. Switching the electron and 
integrating the overlap between the initial and final 
states then gives the nodal behavior shown. 

Addition of a lone p-type function to He centers 
seems to have little effect on overlap or coupling terms. 
However, to adequately describe polarization of electron 

‘7 refers to the coefficient of the exponent in a Gaussian type 

orbital: a eY’, where r is the distance from the nucleus. Note that 
y is given in a.u.-‘. 

‘y here was chosen based on a comparable diffuse s for H; see 
Ref. [13]. 

-2 - 
-4 - 

~@@%j$gjXXXX 
+ o%I XXXXXXXXXXXXXX 

++ 

-6 - +++Pes$p++++ co 
x -8- 

0 q 8 +++++++ 
-10 - Oo B~oooooooo 0 0 0 q -12 - 

O 

OrI 0 

-14 - 000 OB@ 

.16t,...‘..“‘...“....‘....‘...“....1.... 
2 3 4 5 6 7 8 9 0 

a Separation, ii 

-10 - @g8@j@j” xx 
++;++++++++++++++++ 

oar2 xx xxxxxxxxxxxx 
-15 : Ok-2 

0a 
0a 

-20 - 
OO"O 

es 
-25 7 0 ra_ 

2 3 4 5 6 7 8 9 10 

b Separation, 8, 

Yi 

e_ 6.0 - 

F- 5.5 : 

=: 
v_ 

z + 5.0; 
q 

4.5 - 

J 
2 3 4 5 6 I 8 9 10 

C Separation, A 

Fig. 1. (a) Overlaps, (b) coupling elements and (c) ratios of one- 

to two-electron terms for the Hez+ system. 0, 21G; 0, 31G; 0, 

31G+p; X, 31G+s; +, 31G+spc; details of basis sets are in the 
text. T,i is in a.“. 

shells by ions, etc., both diffuse s and p functions should 
be used, with additional centered functions, as shown 
in the 31G+ spc case, which yields the most smooth 
and reasonable results. Of course, the more functions 
within a basis set, the more flexible it becomes and 
the better the results, as long as basis functions chosen 
are appropriate for the system (i.e. yield lowest 
energies). 
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As shown in Fig. l(c), the 21G, 31G and 31G+p 
cases yielded ratios of the one-electron versus two- 
electron parts of the coupling elements which were 
nearly constant at 5.25. Thus, methods which neglect 
two-electron terms (such as extended Htickel) neglect 
a significant contribution to the coupling element for 
this simple three-electron system. The 31G + s set again 
gave nodal behavior around 6 A. 

In addition to studying the changes in overlap and 
coupling elements with distance and with various basis 
sets, we studied the addition of a range of diffuse 
Gaussians at a fixed geometry (5.0 8, separation), shown 
in Fig. 2. For this study we used Pople’s 31G basis set 
[6c,d,fl. To this we added a single s-type Gaussian 
function, with an exponential coefficient varied over 
the range lo3 to 10p6. Note that (at 5.0 A) significant 
changes to the coupling element occur only over a 
narrow range of exponential coefficients (10’ to 10p4). 
The largest coupling element at 5.0 8, was found to 
occur with an s-type Gaussian with y=O.O13; with this 
additional basis we obtained a coupling element of 
4.1985 X 10e5 a.u.3, as opposed to the value without 
the additional basis, 1.4474~ lop6 a.u. It should be 
noted that the lowest total energy at 5.0 A was obtained 
with the addition of a basis function with y=O.3072, 
which gave a coupling element of 1.6854~ lO-‘j a.u. 
(Corresponding overlaps and HF energies are: for no 
additional basis, overlap 2.9396 X lo-‘, energy - 4.8488 
a.u.; for y= 0.013, overlap 8.2939 x 10W4, energy 
- 4.8491 a.u.; for y= 0.3072, overlap 3.3384 X 10p5, 
energy -4.8507 a.u.) 

4.2. H,’ 

Three different configurations of the bimolecular 
[H212+ system were examined over a range of geometries. 
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Fig. 2. Coupling elements vs. log,,,(y) for He,+ 31G+s (y on added 
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‘Throughout the text we report the absolute values of the coupling 

elements. 

The first configuration, labeled H,+(R) (Fig. 3), con- 
sisted of two H, molecules parallel to one another and 
lying in a plane, with the intramolecular bond distances 
held fixed at 0.855 A, while the intermolecular distance 
was varied (rectangular). The second configuration, 

H,‘(L) (Fig. 4), consisted of two H, molecules lined 
up (linear), with the intramolecular bond distances held 
at 0.884 A, and the intermolecular (inner H-inner H) 
distance varied. The third configuration, H,‘(X) (Fig. 
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5) was similar to the first, except that the two hydrogen 
molecules were twisted 90” relative to one another. 
The intramolecular bond distances were held at 0.855 
A. 

The results for each H,+ system were similar: H,+(R) 
and Ha+(X) were basically identical, differing by less 
than 0.5% in all values (see Figs. 3 and 5), while H4+ (L) 
was similar but with lower overlaps and coupling ele- 
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ments (-40% of the H,+(R) values) (see Fig. 4) for 
a given intermolecular distance. With this in mind, we 
will discuss the results for H,“(R) as the general case. 
We examined four different basis sets over the inter- 
molecular separation range 3-9 A: Pople’s 21G, 31G, 
31G+p (y= 1.1) and 31G + s (y= 0.036) [6c,d,f,13]. 

Overlaps and coupling elements are shown in Figs. 
3(a) and (b), respectively. Note that all basis sets give 
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smooth behavior over the range shown, but that 31G + s 
gives basically exponential decay over the full range 
(3-9 A), while the other sets give a more rapid decay. 
Energies at 5.0 8, are, for 21G= - 1.6890 au., 
31G = - 1.6942 au., 31G+s= - 1.6952 a.u. and 
31G+p = - 1.7091 a.u. Contrary to the He2+ system, 
the p-type orbitals are well populated and contribute 
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to both intermolecular (T bonding as well as intra- 
molecular coupling. 

The ratios of one-electron versus two-electron in- 
tegrals are shown in Fig. 3(c). Note that two-electron 
terms decline with respect to one-electron terms in 
systems without additional functions (21G, 31G), while 
the opposite is true with systems with added functions 
(31G+p, 31G+s). 
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Two configurations of the bimolecular system [H,O],’ 
were studied: [H,O],‘(l) (Fig. 6) consisted of two water 
molecules whose planes were parallel and whose hy- 
drogens eclipsed one another (H-O distance 0.9675 A; 
LHOH 115.215”) while [H,O],+(2) (Fig. 7) consisted 
of two water molecules lying in a plane, with the oxygens 
pointing at one another (H-O distance 0.9675 A; LHOH 
114.975’). Intermolecular distances for both systems 
are O-O nuclear separations. We examined three dif- 
ferent basis sets over the intermolecular separation 
range 3-9 A: Pople’s 6-31G (1~2s~ on 0, 2s on H), 
6-31G+ d (on 0 only; r=O.8) and 6-31G+sp (on 0 
only; y= 0.0845) [6d,e,13]. 

The results for the two different systems of [H2012+ 
were similar. Overlaps for the [H,O],+(l) system were 
generally 10 times larger than those of [H2012+(2), 
while coupling elements were 10-100 times larger for 
[H,O],‘(l), but the trends were consistent between 
the two cases. We will therefore describe [H2012+(1) 
as the general case. Note that both systems failed to 
yield suitable data at separations greater than 7 A, 
except when the diffuse sp basis was added. 

Overlaps and coupling elements are shown in Figs. 
6(a) and 6(b), respectively. Note that 6-31G and 6- 
31G + d give basically identical results, yielding a faster- 
than-exponential decay with distance, while 6-31G + sp 
is basically exponential for both overlap and coupling 
terms. 

Ratios of one- versus two-electron terms are shown 
in Fig. 6(c). Though less significant than in the He,+ 
or H,’ systems, the two-electron term remains im- 
portant enough in systems with heavy atoms that its 
neglect may cause significant errors in calculated cou- 
pling elements. 

5. Conclusions 

We have examined a series of symmetric, two-site 
electron exchange systems with a series of different 
basis sets, observing the changes with the addition of 
diffuse and polarizable basis functions. We have directly 
calculated, using the corresponding orbitals scheme, 
the overlaps and coupling elements for the initial and 
final states of an electron transfer event occurring over 
a range of internuclear and intermolecular separations. 

At present we have not considered the effects of 
off-centre basis functions and we have limited ourselves 
to the commonly available basis sets in order to illustrate 
the problems that are connected to the use of these 
when calculating electron transfer coupling elements. 
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polarizable (p or d) functions to systems such as HeZ+ 
(purely s-type) or [H2012+ (which already has occupied 
p orbitals) gives little change to overlaps or coupling 
terms, while in a system such as H,’ (bimolecular; 
pseudo-p character) addition of polarizable functions 
increases coupling at large distances (but has little effect 
on overlap) and alters the ratio of one- versus two- 
electron terms in the coupling element. Addition of 
diffuse functions in all cases yields the most dramatic 
effects, giving for both overlap and coupling basically 
exponential decays with distance which are much less 
rapid than for systems without diffuse functions. 

It must be stressed that the ‘best’ choice for a basis 
set should take into consideration both flexibility and 
minimization of energy. Arbitrarily adding diffuse func- 
tions to atomic centers may increase coupling terms 
dramatically, and yet may not be appropriate for the 
system in question. Addition of a suitable number of 
both diffuse and polarizable functions and minimization 
of energy terms should yield the ‘best’ results, giving 
both lower energies and a more extended range of 
geometries over which calculations are valid. 

In addition, we have carefully examined the contri- 
bution of one- and two-electron terms to the overall 
coupling expression. In all systems studied, the two- 
electron term is a significant contribution to the coupling 
element, and its neglect could not fail to adversely 
affect an adequate description of intermolecular cou- 
pling. Another aspect to consider is the small range 
by which the ratio of one and two electronic contributions 
varies. This indicates that semi-empirical calculations 
that grossly neglect two-electronic terms can be par- 
ametrized for each homolog series of charge transfer 
systems and thereby provide good estimates of the 
electron transfer coupling elements. This will of course 
extend the direct scheme of calculating coupling ele- 
ments to very large systems. 
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