

Inorganica Chimica Acta 227 (1994) 149-151

Inorganica Chimica Acta

Note

Alkylation of 2-vinylpyridine and crystal structure of bis{(acetylacetonate)(1-pyridylbutyl)nickel(II)} complex

Masahiko Maekawa ^{a,*}, Megumu Munakata ^{b,*}, Takayoshi Kuroda-Sowa ^b

^a Research Institute for Science and Technology, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577, Japan ^b Department of Chemistry, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577, Japan

Received 14 March 1994; revised 9 May 1994

Abstract

The alkylation of 2-vinylpyridine (2-vpy) was produced by the reaction of $[Ni(acac)_2]$ (acac = acetylacetone), 2-vpy and AlEt₃ to isolate the dinickel(II) complexes with 1-pyridylbutanate (L). Two nickel atoms are bridged by the N atom and carbonate atom of L to form the binuclear complex. Each Ni atom is also coordinated by two O atoms of acetylacetonate, providing the square-planar geometry. The bridging mode of L is head-to-tail coordination, and the eight-membered ring Ni₂N₂C₄ framework has a rare staggered conformation.

Keywords: Crystal structures; Nickel complexes; Alkylation; Acetylacetonate complexes; Insertion reactions

1. Introduction

Various organic compounds have been produced so far using organometallic compounds such as those of Ni, Pd and Pt. In particular, the characterization of [Ni(acac)(alkyl)(L)] compound (acac = acetylacetone) is important in order to determine the intermediates in the reduction of Ni acac complexes by AlEt₃ [1–4], with respect to the insertion reaction of alkyls to alkynes and alkenes. However, only a few alkylnickel compounds have been characterized crystallographically [1–3], as these compounds are difficult to isolate and crystallize owing to their instability. In this study we prepared a binuclear alkylnickel complex with 1-pyridylbutanate (L), which was produced by alkylation of 2-vinylpyridine and characterized crystallographically.

2. Experimental

2.1. Synthesis of bis{(acetylacetonate)(1-pyridylbutyl)nickel(II)} (1)

[Ni(acac)₂] (77.1 mg, 3×10^{-4} mol) and 2-vinylpyridine (63.2 mg, 6×10^{-4} mol) were mixed in ether (10 ml).

A 0.33 ml hexane solution of AlEt₃ (~15%) was added to the yellowish-green solution at 23 °C under Ar. The resultant blackish-brown suspension was filtered, and the filtrate was sealed in a 5 mm diameter glass tube. The glass tube was allowed to stand for one month at 23 °C and orange-brown crystals were collected. Yield 1.8 mg (0.5%).

2.2. X-ray crystallography of 1

An orange-brown crystal of 1 was attached to the end of a glass fiber and mounted on a Rigaku AFC-5R automated diffractometer with graphite monochromated Mo K α radiation ($\lambda = 0.71079$ Å). The conditions for the data collection and the crystal data for 1 are listed in Table 1. Intensity data were measured by ω -2 θ scans at 23 °C and were corrected for Lorentz and polarization effects. Empirical absorption corrections were carried out. A total of 2235 independent reflections having $I > 3\sigma(I_o)$ was used. The structure was solved by a direct method (MITHRIL) [5] and refined by full-matrix least-squares calculations with anisotropic thermal parameters, including isotropic hydrogen atoms located by difference Fourier synthesis. Reliability factors are defined as $R = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$ and $R_w = [\Sigma w (|F_o| - |F_c|)^2 / \Sigma w F_o^2]^{1/2}$, where $w = 4F_o^2 / (E_o^2 + E_o^2)^2 / \Sigma w F_o^2$

^{*} Corresponding authors.

Table 1						
Crystal	data	and	measurement	conditions	for	1

Formula	$N_{12}O_4N_2C_{28}H_{38}$
Formula weight	584.02
Crystal system	monoclinic
Space group	$P2_{1}/a$
a (Å)	14.164(3)
b (Å)	11.625(4)
c (Å)	8.876(2)
β (°)	103.78(2)
$V(Å^3)$	1419(1)
Ζ	2
$D_{\text{calc}} (\text{g cm}^{-3})$	1.366
F(000)	308
λ (Mo Kα) (Å)	0.71069
μ (Mo K α) (cm ⁻¹)	13.65
Scan type	ω–2θ
Scan rate (° min ⁻¹)	8.0
Scan width (°)	$1.63 + 0.30\theta$
$2\theta_{\max}$ (°)	55.0
No. reflections measured	3639 (total), 3428 (unique)
No. observed reflections	2235 $(I > 3\sigma(I_o))$
R *	0.037
R " ^b	0.044

^a $R = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|.$

^b $R_{\rm w} = [\Sigma w (|F_{\rm o}| - |F_{\rm c}|)^2 / \Sigma w F_{\rm o}^2]^{1/2}$, where $w = 4F_{\rm o}^2 / \sigma^2 (F_{\rm o}^2)$.

 Table 2

 Positional and equivalent isotropic parameters for 1

Atoms	x	у	z	B_{eq}^{a} (Å ²)
Ni(1)	0.44161(3)	0.39845(4)	0.63282(4)	2.52(2)
O(1)	0.3715(2)	0.4467(2)	0.7829(2)	3.4(1)
O(2)	0.5151(2)	0.2914(2)	0.7649(2)	3.5(1)
N(1)	0.3596(2)	0.4992(2)	0.4919(3)	2.6(1)
C(1)	0.2679(3)	0.4626(3)	0.4307(4)	3.5(1)
C(2)	0.1986(3)	0.5287(4)	0.3374(4)	4.2(2)
C(3)	0.2225(3)	0.6388(4)	0.3042(4)	4.0(2)
C(4)	0.3146(3)	0.6776(3)	0.3651(4)	3.4(1)
C(5)	0.3851(2)	0.6075(3)	0.4594(3)	2.6(1)
C(6)	0.4863(2)	0.6440(3)	0.5246(3)	2.7(1)
C(7)	0.5003(3)	0.7708(3)	0.5664(4)	3.5(1)
C(8)	0.6030(3)	0.8044(4)	0.6393(4)	4.4(2)
C(9)	0.6127(4)	0.9275(4)	0.6974(6)	6.9(3)
C(10)	0.3341(3)	0.4757(4)	1.0254(4)	4.7(2)
C(11)	0.3920(2)	0.4171(3)	0.9254(4)	3.3(1)
C(12)	0.4618(3)	0.3367(4)	0.9899(4)	3.9(2)
C(13)	0.5174(3)	0.2778(3)	0.9085(4)	3.9(2)
C(14)	0.5896(4)	0.1901(5)	0.9900(5)	7.3(3)

^a $B_{eq} = (4/3) \Sigma_i \Sigma_j \beta_{ij} a_i \cdot a_j.$

 $\sigma^2(F_o^2)$. Atomic scattering factors and anomalous dispersion terms were taken from Ref. [6]. All calculations were performed using the TEXSAN crystallographic software package [7]. The final *R* and *R*_w values were 0.037 and 0.044, respectively. Positional and equivalent isotropic parameters for 1 are given in Table 2.

3. Results and discussion

The alkylation of 2-vinylpyridine was effected by the reaction of $[Ni(acac)_2]$, 2-vpy and AlEt₃ to produce the compound 1-pyridylbutanate (L). Single crystals of the phdinickel(II) complex (1) with L were isolated (see Scheme 1). The molecular structure of 1 is shown in Fig. 1, and selected bond distances and angles are listed in Table 3. Complex 1 has crystallographic $P2_1/a$ symmetry. Two nickel atoms are bridged by the N atom and the carbonate atom of L to form a binuclear structure. Each Ni atom is also coordinated by the two O atoms of acetylacetonate, providing the square-planar geometry. The bridging mode of L is head-to-tail coordination [8], and the eight-membered-ring $Ni_2N_2C_4$ framework has a staggered conformation [8,9]. This is a unique binuclear alkylnickel complex, because only a few binuclear complexes have a staggered conformation [8,9], and furthermore the reported alkylnickel complexes are almost all mononuclear [1-4,10].

The Ni–N distance of 1.896(3) Å is close to that found in the usual nickel(II) complexes with square-

Fig. 1. Crystal structure of 1 and the atom labeling scheme.

Table 3								
Selected bond	distances	(Å)	and	bond	angles	(°)	for	1

$Ni(1) \cdots Ni(1')$	3.966(1)	Ni(1)-N(1)	1.896(3)
Ni(1)-C(6)	1.979(3)	Ni(1)-O(1)	1.925(2)
Ni(1)-O(2)	1.851(2)		
N(1)-Ni(1)-C(6)	91.5(1)	N(1)-Ni(1)-O(1)	86.6(1)
C(6)-Ni(1)-O(2)	88.4(1)	O(1)-Ni(1)-O(2)	93.6(1)

planar geometry (~ 1.90 Å) [11]. The Ni–C(σ) distance of 1.979(3) Å is rather longer than that of [Ni(acac)(PPh₃){(Ph)C=C(Ph)(CH₃)}] (1.897 Å) [3], but is similar to those of other alkylnickel complexes with acac (1.944–2.03 Å) [1,2,10]. The two Ni–O distances (1.851(2) and 1.925(2) Å) are very different. The Ni–O distance *trans* to the Ni–C(σ) bond shows considerable lengthening (0.074 Å) owing to the *trans* effect. This lengthening is the largest among the values (0.004–0.05 Å) reported for alkylnickel complexes with acac [1–3,10].

4. Supplementary material

Tables of fractional atomic coordinates, thermal parameters, and interatomic bond distances and angles are available on request from Professor M. Munakata.

Acknowledgements

We thank Mr Youichi Nozaka and Mr Kouji Hachiya for their assistance with the X-ray crystallography. This work was supported in part by a Grant-in-Aid for Scientific Research (Nos. 06740517, 05453131 and 06269209) from the Ministry of Education, Science and Culture of Japan. We thank Kinki University for financial support.

References

- B.L. Barnett and C. Krüger, J. Organomet. Chem., 42 (1972) 169.
- [2] F.A. Cotton, B.A. Frenz and D.L. Hunter, J. Am. Chem. Soc., 96 (1974) 4820.
- [3] J.M. Huggins and R.G. Bergman, J. Am. Chem. Soc., 101 (1979) 4412.
- [4] A. Yamamoto, T. Yamamoto, T. Saruyama and Y. Nakamura, J. Am. Chem. Soc., 95 (1973) 4073.
- [5] MITHRIL, an integrated direct methods computer program, University of Glasgow, Scotland, UK; C.J. Gilmore, J. Appl. Crystallogr., 17 (1984) 42.
- [6] International Tables for X-ray Crystallography, Vol. 4, Kynoch, Birmingham, UK, 1974.
- [7] TEXSAN-TEXRAY, structure analysis package, Molecular Structure Corp., The Woodlands, TX, USA, 1985.
- [8] M. Maekawa, M. Munakata, S. Kitagawa and T. Yonezawa, Bull. Chem. Soc. Jpn., 64 (1991) 2286.
- [9] H. Schmidbauer, A. Wohlleber, U. Schubert, A. Frank and G. Huttner, Chem. Ber., 110 (1977) 2751.
- [10] O.S. Mills and E.F. Paulus, J. Chem. Soc., Chem. Commun., (1966) 738.
- [11] L. Sacconi, F. Mani and A. Bencini, in G. Wilkinson (ed.), *Comprehensive Coordination Chemistry*, Vol. 5, Pergamon, New York, 1987, Ch. 50, pp. 45–287.