

Inorganica Chimica Acta 227 (1994) 119-127

Inorganica Chimica Acta

Heteronuclear metal cluster complexes with a new coordination mode of the $Fe_2S_2(CO)_6$ unit. Synthesis, structure and possible reaction pathway of the first Fe–Cu–S cluster compound, $[Fe_6Cu_5S_6(CO)_{18}(PPh_3)_2]^-$

Botao Zhuang *, Binghua Pan, Liangren Huang, Peihua Yu

Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, State Key Laboratory of Structural Chemistry, Fuzhou 350002, Fujian, China

Received 1 February 1994; revised 1 June 1994

Abstract

The first iron-copper-sulfur cluster compound $[Et_4N][Fe_6Cu_5(\mu_4-S)_6(CO)_{18}(PPh_3)_2]$ (1) is prepared by the reaction of $[Et_4N][CuCl_2PPh_3]$ with Li₂[Fe₂S₂(CO)₆] in mixed solvents of MeCN-CH₃OH. 1 · MeCN crystallizes in the monoclinic, space group *Pn* with *a* = 12.426(3), *b* = 15.572(4), *c* = 20.709(4) Å; β = 90.14(2)°; *V* = 4007.2 Å³; *Z* = 2, *D_c* = 1.80 g cm⁻³, and *R*₁ = 0.032, *R*₂ = 0.037 for 3319 independent reflections (*I* > 3 σ (*I*)). The anion of 1 contains an undeca-nuclear Fe-Cu-S core with Fe¹ and Cu¹, [Fe₆Cu₅(μ_4 -S)₆]⁻, which consists of a central trigonal bipyramid composed of five copper atoms in the center and three 'butterfly' type Fe₂S₂ units chelating to the copper atoms of the central Cu₅ trigonal bipyramid along the pseudo-*D*₃ axis resulting in pseudo-*D*₃ symmetry. All the sulfur atoms in 1 are μ_4 -S, linking to two iron and two copper atoms. Around the core, twelve terminal carbonyls, six bridging CO groups and two PPh₃ ligands meet the requirement of four-coordination of the copper atoms and five-coordination of the iron atoms. Fe–S and Cu–S distances are 2.28–2.36 and 2.24–2.51 Å, respectively. There are fifteen M–M bonds in 1, including three Fe–Fe of 2.5 Å, six Cu–Fe of 2.7 Å and six Cu–Cu of 2.6 Å. The Fe₂S₂(CO)₆ units in 1 take a new coordination mode in that each unit coordinates to four metal atoms by its two sulfur atoms in a μ_4 -type fashion. A possible reaction pathway for 1 via the formation of two reactive fragments is proposed and discussed.

Keywords: Crystal structures; Iron complexes; Copper complexes; Sulfur complexes; Cluster complexes

1. Introduction

Interest in transition metal-sulfur clusters has arisen from their significance as possible models for the active center of metal enzyme [1–5] and heterogeneous catalysts [6–13] and their unusual electronic properties and structural chemistry. Recently, an important synthetic route to produce heteronuclear metal clusters using the iron-sulfur cluster Fe₂S₂(CO)₆ or its dianion [14] as the source of iron and sulfur bridges has been increasingly used and many mixed-metal clusters containing the Fe₂S₂(CO)₆ unit have been reported [4,15–27]. In the reported clusters, the coordination modes of the Fe₂S₂(CO)₆ unit are of three types: (i) the 'butterfly' type Fe₂S₂ unit coordinated to one metal atom by μ_3 -S or two metal atoms by μ_4 -S [4,17–21] (A); (ii) a near planar Fe_2S_2 unit coordinated to a metal atom leading to a square pyramid with the metal atom at the apex [4,19,22–26] (B); (iii) a planar Fe_2S_2 unit linking two metal atoms on two sides by the μ_4 -S atoms [26,27] (C); the metals are Fe, Co, Ni, Pt, Pd, Mo, W, Zn and Cr. Herein we report a new iron-copper-sulfur cluster compound containing $Fe_2S_2(CO)_6$ units which are in a new coordination mode (D). The 'butterfly' type $Fe_2S_2(CO)_6$ unit coordinates to four metal atoms by the μ_4 -S atoms.

2. Experimental

2.1. Materials and methods

Acetonitrile and methanol were dried by distillation with CaH_2 and magnesium methoxide, respectively.

^{*}Corresponding author.

Compounds, $[Fe_2S_2(CO)_6]$ [14] and $[Et_4N][CuCl_2PPh_3]$ [28] were prepared by literature methods. $LiB(C_2H_5)_3H$ was purchased from Aldrich.

All synthetic reaction procedures, crystal growth and preparation of the sample for X-ray determination and spectroscopy measurements were carried out under a nitrogen atmosphere, using the Schlenk technique and degassed solvents, and all reactants were also degassed before used.

IR spectra were recorded on a Perkin-Elmer 577 spectrophotometer in the range $200-4000 \text{ cm}^{-1}$ using KBr pellets. Elemental analysis for carbon, hydrogen and nitrogen was conducted on a Carlo Erba Strumentazion elemental analyser MOD 1106.

2.2. Synthesis of $[Et_4N][Fe_6Cu_5(\mu_4-S)_6-(\mu-CO)_6(CO)_{12}(PPh_3)_2]$ (1)

To a solution of $Fe_2S_2(CO)_6$ (0.25 g, 0.73 mmol) in 20 ml CH₃OH at -78 °C were added dropwise 1.5 ml of a 1 M solution of LiB(C₂H₅)₃H in THF. After stirring for a while, to the dark brown resulting reaction solution was added 0.40 g (0.73 mmol) of [Et₄N][CuCl₂PPh₃] in 20 ml MeCN and the reaction temperature was raised gradually to room temperature. The reaction mixture was then stirred for 2 days at room temperature. After filtering off a small amount of brown residue, the brown-green filtration was cooled to 4 °C, and 0.22 g of dark red crystalline product 1 was collected by filtering and dried in vacuo; yield 73% (based on the [Et₄N][CuCl₂PPh₃] used). Anal. Calc. for CraH50NCu5Fe6S6P2O18 · CH3CN: C, 37.58; H, 2.59; N, 1.37; Cu, 15.54; Fe, 16.40; S, 9.39; P, 3.03. Found: C, 36.65; H, 2.75; N, 1.81; Cu, 14.90; Fe, 16.70; S, 9.85; P, 2.89%. IR (KBr pellet): 2050s, 2020s, 1990s, 1910s $(\nu MC=O)$, 351w, 339w ($\nu Fe-S$), 312w, 254w ($\nu Cu-S$).

2.3. X-ray analysis

Crystal data and details of data collection and refinement procedures for $1 \cdot \text{MeCN}$ are summarized in Table 1. The structure was solved by direct methods. A total of 11 atoms was located from an *E*-map and the remaining atoms were located in succeeding difference Fourier syntheses. Hydrogen atoms were not included in the calculations. The structure was refined

Table 1

Crystal data and details of data collection and refinement procedures for $1 \cdot \text{MeCN}$

Ð

Compound	$[Cu_5Fe_6S_6(PPh_3)_2(CO)_{18}][Et_4N] \cdot MeCN$
Formula	$C_{64}H_{53}Cu_5Fe_6N_2O_{18}P_2S_6$
Formula weight	2044.5
Crystal system	monoclinic
Space group	Pn (No. 7)
a (Å)	12.426(3)
b (Å)	15.572(4)
c (Å)	20.709(4)
β ^(°)	90.14(2)
$V(Å^3)$	4007.2
Z	2
$\rho (g cm^{-3})$	1.80
μ (cm ⁻¹)	26.1
Crystal dimensions	$0.30 \times 0.30 \times 0.20$
(mm)	
Temp. (°C)	23 ± 1
Diffractometer	Enraf-Nonius CAD4
Radiation, (Å)	Μο Κα, 0.71073
Monochromator	graphite
Scan technique	ω–2θ
Scan speed (°/min)	2 to 7 (in ω)
Data collected, 2θ max	50.0 $(+h+k\pm l)$
(°)	
ω scan width (°)	$1.40 + 0.35 \tan \theta$
Unique data	7037
Data used in refinement	
with $I > 3.0\sigma(I)$	3319
Corrections	Lorentz-polarization
	line decay (0.981-1.142)
	DIFABS absorption (0.578-1.718)
Solution	direct methods
R _a	0.032
R _w ^b	0.037

 ${}^{*}R = \Sigma ||F_{o}| - |F_{c}|| \Sigma |F_{o}|.$

 ${}^{b}R_{w} = [\Sigma w(|F_{o}| - |F_{c}|)^{2} / \Sigma w |F_{o}|^{2}]^{1/2}.$

in full-matrix least-squares where the function minimized was $\Sigma w(|F_o| - |F_c|)^2$ and the weight w is as defined by Killean and Lawrence with terms of 0.020 and 1.0 [29]. The final cycle of refinement included 596 variable parameters for 3319 reflections with $I > 3.0\sigma(I)$ and converged to 0.01σ with unweighted and weighted agreement factors of 0.032 and 0.037, respectively. The standard deviation of an observation of unit weight was 0.41. There were five correlation coefficients greater than 0.50. The highest peak in the final difference Fourier had a height of 0.40 e Å⁻³ with an estimated error based on δF [30] of 0.09 The minimum negative

Table 2

peak had a height of -0.12 e Å⁻³. All calculations were performed on a VAX computer using SDP/VAX [31]. The final positional and thermal parameters with e.s.d.s are listed in Table 2. Selected bond distances and bond angles are shown in Tables 3 and 4, respectively.

3. Results and discussion

3.1. Structure of $[Et_4N][Fe_6Cu_5S_6(CO)_{18}(PPh_3)_2]$ (1)

1 contains two discrete fragments, a cation Et_4N^+ and an undeca-nuclear mixed-metal anion $[Fe_6Cu_5S_6(CO)_{18}(PPh_3)_2]^-$. An ORTEP drawing of the anion of 1 and a view of the Fe-Cu-S core in $[Fe_6Cu_5S_6(CO)_{18}(PPh_3)_2]^-$ are depicted in Figs. 1 and 2, respectively. The structure of the anion of 1 comprises a novel undeca-nuclear iron-copper-sulfur cluster core $[Fe_6Cu_5(\mu-S)_6]^-$ (Fig. 2), which consists of a central Cu_5 in a trigonal bipyramid arrangement with the equatorial plane Cu(1)Cu(2)Cu(3), and three puckering 'butterfly' type Fe₂S₂ units chelating to the copper atoms of the central Cu_5 along the pseudo- D_3 axis through the Cu(4) and Cu(5) atoms of the trigonal bipyramid resulting in pseudo- D_3 symmetry. Around the $[Fe_6Cu_5(\mu-S)_6]^-$ core, there are twelve terminal CO, six bridging CO and two PPh₃ ligands coordinated to the Fe and Cu atoms, resulting in five-coordination geometry of each Fe atom, and tetra-coordination geometry of each Cu atom in the cluster. The Fe-Fe bond lengths of 2.517(4)-2.532(4) Å, Fe-S bond distances of 2.292(5)-2.353(6) Å and FeSFe angles of $65.5(1)-66.3(1)^{\circ}$ of the Fe₂S₂(CO)₆ units in 1 are comparable with those observed in $Fe_2S_2(CO)_6$ and other 'butterfly' type $Fe_2S_2(CO)_6$ -containing complexes (see Table 5) indicating that the $Fe_2S_2(CO)_6$ units in cluster 1 are similar to those in $Fe_2S_2(CO)_6$ and related complexes with a puckered Fe_2S_2 ring in which the oxidation states of the Fe atoms are Fe(I). Each S atom of the $Fe_2S_2(CO)_6$ unit becomes μ_4 -S, connecting with 2 copper atoms, thus the coordination mode of the $Fe_2S_2(CO)_6$ unit in the cluster is a new type, found here for the first time. It is worth pointing out that each of the six bridging carbonyls is unsymmetrically connected with each pair of Fe and Cu atoms with $Fe-C_b$ (C_b is the carbon atom of the bridging carbonyl) of 1.81-1.89 Å and Cu-C_b of 2.6075-2.6635 Å. The fact that Fe-C_b of 1.84 (av.) Å and Fe– C_b – O_b (O_b is the oxygen atom of the bridging carbonyl) of 166-170° are very close to the Fe- C_t (C_t is the carbon atom of the terminal carbonyl) and Fe– C_t – O_t (O, is the oxygen atom of the terminal carbonyl) values implies that two of the carbonyls in each $Fe_2S_2(CO)_6$ unit converted to two bridging carbonyls in order to complete the four-coordination geometries of the Cu atoms in the cluster 1, but still maintain the characteristics of terminal CO ligands.

Positional and thermal parameters of $[Cu_5Fe_6S_6(CO)_{18}(PPh_3)_2]$ - $[Et_4N]\cdot MeCN$

Atom	x	у	z	B (Å ²)
Cu(1)	1.070	0.1559(1)	0.781	2.84(4)
Cu(2)	0.8588(1)	0.1605(1)	0.82841(9)	2.79(4)
Cu(3)	0.8968(1)	0.1645(1)	0.69409(9)	2.77(4)
Cu(4)	0.9336(2)	0.0310(1)	0.76404(9)	2.83(4)
Cu(5)	0.9473(2)	0.2922(1)	0.7711(1)	3.00(4)
Fe(1)	0.6540(2)	0.1997(1)	0.7970(1)	2.45(4)
Fe(2)	0.6812(2)	0.1394(1)	0.6847(1)	2.40(4)
Fe(3)	1.0456(2)	0.1913(2)	0.6023(1)	2.86(5)
Fe(4)	1.1871(2)	0.1206(1)	0.6721(1)	2.73(4)
Fe(5)	1.1320(2)	0.1762(1)	0.9044(1)	2.58(4)
Fe(6)	0.9549(2)	0.1163(1)	0.9423(1)	2.45(4)
S(1)	0.7457(3)	0.0716(3)	0.7755(2)	2.59(8)
S(2)	0.7725(3)	0.2598(3)	0.7249(2)	2.53(8)
S(3)	1.0168(3)	0.0657(3)	0.6604(2)	2.66(8)
S(4)	1.0997(3)	0.2494(2)	0.6999(2)	2.45(8)
S(5)	1.0486(3)	0.0571(3)	0.8588(2)	2.38(8)
S(6)	0.9726(3)	0.2451(3)	0.8840(2)	2.70(8)
P(1)	0.9252(3)	-0.1140(2)	0.7666(2)	2.85(9)
P(2)	0.9532(3)	0.4392(2)	0.7713(2)	2.89(9)
O(11)	0.5017(9)	0.3304(8)	0.7611(6)	6.4(3)
O(12)	0.489(1)	0.0943(9)	0.8514(7)	6.8(4)
O(13)	0.707(1)	0.280(1)	0.9205(5)	6.8(3)
O(21)	0.5853(8)	0.2644(8)	0.5971(5)	4.8(3)
O(22)	0.4930(9)	0.0232(8)	0.6855(7)	6.0(3)
O(23)	0.7825(9)	0.0507(8)	0.5750(6)	5.6(3)
O(31)	1.044(1)	0.080(1)	0.4930(6)	7.3(4)
O(32)	1.183(1)	0.3186(8)	0.5402(6)	6.3(3)
O(33)	0.849(1)	0.2811(8)	0.5640(6)	5.7(3)
O(41)	1.3709(9)	0.2287(9)	0.6478(7)	6.2(3)
O(42)	1.263(1)	-0.0141(8)	0.5844(5)	6.0(3)
O(43)	1.2887(9)	0.0307(7)	0.7808(5)	4.6(3)
O(51)	1.163(1)	0.3012(8)	1.0062(6)	6.2(3)
O(52)	1.2855(9)	0.0517(9)	0.9569(7)	7.3(4)
O(53)	1.2994(9)	0.253(1)	0.8207(6)	6.3(4)
O(61)	1.0383(9)	-0.0212(7)	1.0254(6)	5.3(3)
O(62)	0.913(1)	0.2244(9)	1.0533(6)	6.3(4)
O(63)	0.7356(8)	0.0486(9)	0.9376(6)	4.8(3)
C(11)	0.557(1)	0.283(1)	0.7740(8)	3.6(3)*
C(12)	0.552(1)	0.1325(9)	0.8318(7)	2.4(3)*
C(13)	0.697(1)	0.248(1)	0.8738(9)	4.7(4)*
C(21)	0.617(1)	0.216(1)	0.6314(7)	2.9(3)*
C(22)	0.567(1)	0.072(1)	0.6865(8)	4.1(4)*
C(23)	0.755(1)	0.090(1)	0.6194(9)	4.8(4)*
C(31)	1.047(1)	0.124(1)	0.5344(7)	2.9(3)*
C(32)	1.135(1)	0.272(1)	0.5626(7)	3.1(3)*
C(33)	0.920(1)	0.247(1)	0.5838(8)	3.8(3)*
C(41)	1.303(1)	0.190(1)	0.6570(8)	3.9(4)*
C(42)	1.234(1)	0.039(1)	0.6146(8)	4.2(4)*
C(43)	1.246(1)	0.072(1)	0.7446(7)	3.0(3)*
C(51)	1.152(1)	0.255(1)	0.9681(8)	4.2(4)*
C(52)	1.222(1)	0.104(1)	0.9368(8)	3.8(3)*
C(53)	1.232(1)	0.225(1)	0.8471(7)	3.1(3)*
C(61)	1.009(1)	0.030(1)	0.9906(7)	3.2(3)*
C(62)	0.925(1)	0.183(1)	1.0085(8)	4.0(4)*
C(63)	0.816(1)	0.074(1)	0.9351(7)	3.3(3)*
C(111)	0.808(1)	-0.162(1)	0.7287(7)	2.9(3)*
C(112)	0.778(1)	-0.125(1)	0.6715(8)	4.6(4)*
C(113)	0.681(2)	-0.160(2)	0.641(1)	6.7(5)*
C(114)	0.621(2)	-0.224(2)	0.667(1)	8.3(6)*
C(115)	0.659(2)	-0.261(2)	0.722(1)	7.4(6)*
			. ,	(continued)

Table 2 (continued)

Table 3 Selected bond distances (Å) of $[Cu_5Fe_6S_6(CO)_{18}(PPh_3)_2][Et_4N]$

Atom	<i>x</i>	У	z	B (Å ²)	·MeCN			
C(116)	0.751(2)	-0.225(1)	0.757(1)	6.0(5)*	Cu(1)-Cu(2)	2.809(3)	Fe(3)-C(31)	1.75(2)
C(121)	0.925(1)	-0.158(1)	0.8454(7)	2.6(3)*	Cu(1)-Cu(3)	2.799(3)	Fe(3)-C(32)	1.87(2)
C(122)	0.841(1)	-0.132(1)	0.8884(7)	3.1(3)*	Cu(1)-Cu(4)	2.602(3)	Fe(3)-C(33)	1.84(2)
C(123)	0.837(1)	-0.159(1)	0.9500(7)	3.6(3)*	Cu(1)-Cu(5)	2.619(3)	Fe(4) - S(3)	2.294(4)
C(124)	0.918(2)	-0.213(1)	0.980(1)	5.9(5)*	Cu(1)-Fe(4)	2.734(3)	Fe(4) - S(4)	2.353(5)
C(125)	1.004(1)	-0.235(1)	0.9396(9)	4.7(4)*	Cu(1)-Fe(5)	2.697(3)	Fe(4)-C(41)	1.84(3)
C(126)	1.009(2)	-0.210(1)	0.8719(9)	5.4(4)*	Cu(1)-S(4)	2.246(5)	Fe(4) - C(42)	1.84(2)
C(131)	1.042(1)	-0.169(1)	0.7239(8)	4.4(4)*	Cu(1)-S(5)	2.252(5)	Fe(4)-C(43)	1.83(2)
C(132)	1.139(1)	-0.131(1)	0.7372(8)	3.8(3)*	Cu(2)–Cu(3)	2.823(3)	Fe(5)-Fe(6)	2.517(4)
C(133)	1.234(2)	-0.171(1)	0.711(1)	5.8(5)*	Cu(2)-Cu(4)	2.590(3)	Fe(5) - S(5)	2.326(5)
C(134)	1.219(2)	-0.236(1)	0.671(1)	6.5(5)*	Cu(2)–Cu(5)	2.613(4)	Fe(5)-S(6)	2.292(5)
C(135)	1.119(2)	-0.273(2)	0.659(1)	8.1(6)*	Cu(2)-Fe(1)	2.696(3)	Fe(5)-C(51)	1.82(2)
C(136)	1.028(1)	-0.241(1)	0.686(1)	5.3(4)*	Cu(2)-Fe(6)	2.729(3)	Fe(5)-C(52)	1.72(2)
C(211)	0.845(1)	0.494(1)	0.8204(7)	3.0(3)*	Cu(2)-S(1)	2.256(5)	Fe(5)-C(53)	1.89(2)
C(212)	0.866(1)	0.562(1)	0.855(1)	5.4(4)*	Cu(2)-S(6)	2.247(5)	Fe(6) - S(5)	2.283(4)
C(213)	0.774(1)	0.603(1)	0.8831(8)	4.1(4)*	Cu(3)-Cu(4)	2.574(3)	Fe(6)-S(6)	2.352(5)
C(214)	0.679(1)	0.572(1)	0.8820(8)	3.7(3)*	Cu(3)-Cu(5)	2.623(3)	Fe(6)-C(61)	1.81(2)
C(215)	0.662(2)	0.494(1)	0.849(1)	5.7(5)*	Cu(3)-Fe(2)	2.714(3)	Fe(6)-C(62)	1.76(3)
C(216)	0.748(1)	0.459(1)	0.8182(8)	4.2(4)*	Cu(3)-Fe(3)	2.688(3)	Fe(6)-C(63)	1.85(2)
C(221)	0.935(1)	0.487(1)	0.6916(7)	2.9(3)*	Cu(3)-S(2)	2.235(4)	P(1)-C(111)	1.81(2)
C(222)	0.983(2)	0.449(2)	0.642(1)	7.7(6)*	Cu(3)-S(3)	2.255(5)	P(1)-C(121)	1.77(2)
C(223)	0.985(2)	0.480(2)	0.580(2)	11.4(9)*	Cu(4) - S(1)	2.431(4)	P(1)-C(131)	1.90(2)
C(224)	0.907(1)	0.553(1)	0.5682(9)	5.3(4)*	Cu(4)-S(3)	2.444(5)	P(2)-C(211)	1.89(2)
C(225)	0.857(2)	0.591(1)	0.621(1)	6.4(5)*	Cu(4)-S(5)	2.457(4)	P(2) - C(221)	1.82(2)
C(226)	0.873(1)	0.558(1)	0.6847(8)	4.1(4)*	Cu(4)-P(1)	2.261(5)	P(2)-C(231)	1.83(2)
C(231)	1.081(1)	0.485(1)	0.7987(8)	3.9(3)*	Cu(5)-S(2)	2.424(4)	O(11)-C(11)	1.04(2)
C(232)	1.145(1)	0.429(1)	0.8366(9)	4.7(4)*	Cu(5)-S(4)	2.493(4)	O(12) - C(12)	1.06(2)
C(233)	1.241(2)	0.463(2)	0.863(1)	8.0(6)*	Cu(5)-S(6)	2.470(5)	O(13)-C(13)	1.09(2)
C(234)	1.272(2)	0.545(2)	0.849(1)	7.1(6)*	Cu(5) - P(2)	2.291(5)	O(21) - C(21)	1.11(2)
C(235)	1.211(2)	0.598(2)	0.809(1)	6.9(5)*	Fe(1)-Fe(2)	2.532(4)	O(22) - C(22)	1.20(3)
C(236)	1.111(1)	0.570(1)	0.7848(7)	3.1(3)*	Fe(1)-S(1)	2.341(5)	O(23)-C(23)	1.16(2)
N(1)	0.944(1)	0.498(1)	0.0912(9)	7.3(5)*	Fe(1)-S(2)	2.300(5)	O(31)-C(31)	1.10(2)
C(71)	0.371(2)	0.440(1)	0.624(1)	6.0(5)*	Fe(1)-C(11)	1.83(2)	O(32) - C(32)	1.06(2)
C(72)	0.333(3)	0.474(2)	0.692(2)	13(1)*	Fe(1)-C(12)	1.80(2)	O(33)-C(33)	1.10(2)
C(73)	0.490(2)	0.452(2)	0.531(1)	8.8(7)*	Fe(1)-C(13)	1.84(2)	O(41)-C(41)	1.05(2)
C(74)	0.564(2)	0.502(2)	0.481(1)	11.2(9)*	Fe(2)-S(1)	2.299(5)	O(42) - C(42)	1.10(3)
C(75)	0.036(2)	0.460(2)	0.131(1)	10.9(8)*	Fe(2)-S(2)	2.344(5)	O(43) - C(43)	1.12(2)
C(76)	0.616(2)	0.477(2)	0.645(1)	11.5(9)*	Fe(2)-C(21)	1.80(2)	O(51)-C(51)	1.07(3)
C(77)	0.890(2)	0.419(2)	0.071(2)	11.7(9)*	Fe(2) - C(22)	1.77(2)	O(52) - C(52)	1.21(2)
C(78)	0.769(3)	0.449(3)	0.025(2)	15(1)*	Fe(2)-C(23)	1.81(2)	O(53) - C(53)	1.09(2)
N(2)	0.432(2)	0.261(2)	0.975(1)	10.7(7)*	Fe(3)-Fe(4)	2.526(3)	O(61) - C(61)	1.14(2)
C(81)	0.463(2)	0.206(2)	1.006(1)	9.8(8)*	Fe(3)-S(3)	2.326(5)	O(62) - C(62)	1.14(3)
C(82)	0.513(2)	0.125(2)	0.024(1)	7.8(6)*	Fe(3)-S(4)	2.312(5)	O(63)-C(63)	1.08(2)
-		. /				× /		
-	-							

Starred atoms were refined isotropically.

Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: $(4/3)[a^2B(1,1) + b^2B(2,2) + c^2B(3,3) + ab(\cos \gamma)B(1,2) + ac(\cos \beta)B(1,3) + bc(\cos \alpha)B(2,3)].$

This is consistent with the IR data of 1 (2050, 2020, 1990, 1910 cm⁻¹), which indicate the presence of the Fe₂S₂(CO)₆ unit [14,17,35,36]. There are fifteen metal-metal bonds including three Fe-Fe bond lengths of 2.521 Å, six Fe-Cu of 2.710 Å and six Cu-Cu of 2.604 Å in the cluster for stabilizing the structure of 1 with 168 skeleton electrons in accordance with the 9N-L (N, number of nuclear; L, number of M-M bonds) rule [37]. The two groups of Cu-S distances corresponding to two apical copper atoms (Cu_A-S) and the three copper atoms (Cu(1), Cu(2), Cu(3)) of the triangle

Numbers in parentheses are e.s.d.s in the least significant digits.

in the central trigonal bipyramid (Cu_T–S) are 2.453 and 2.249 Å, respectively, reflecting that the two kinds of copper atoms with a different coordination environment possess a different electron density although their formal oxidation state is +1. By carefully inspecting the six Cu–S distances of the Cu atoms located in the triangle of the central trigonal bipyramid, it can be seen that the values of the Cu–S distances are divided into two groups, three of 2.243 Å and three of 2.254 Å, indicating the vestiges of fragment construction in the formation of cluster 1 (see following section). Table 4 Selected bond angles (°) of $[Cu_5Fe_6S_6(CO)_{18}(PPh_3)_2][Et_4N] \cdot Metabolic Metabol$

Table 4 (continued)

Selected bond angles	(°) of [Cu ₄]	$Fe_{6}S_{6}(CO)_{18}(PPh_{3})_{2}$ [Et	N] · MeCN				
	() [5			Cu(1)-Cu(5)-S(6)	67.5(1)	S(2)-Fe(2)-C(22)	148.8(6)
Cu(2)-Cu(1)-Cu(3)	60.45(7)	Cu(5)-Cu(2)-Fe(1)	96.4(1)	Cu(1)-Cu(5)-P(2)	142.2(2)	S(2)-Fe(2)-C(23)	111.3(7)
Cu(2)-Cu(1)-Cu(4)	57.05(7)	Cu(5)-Cu(2)-Fe(6)	114.02(9)	Cu(2)-Cu(5)-Cu(3)	65.25(9)	C(21)-Fe(2)-C(22)	92.9(9)
Cu(2)-Cu(1)-Cu(5)	57.41(8)	Cu(5) - Cu(2) - S(1)	121.5(1)	Cu(2)-Cu(5)-S(2)	68.8(1)	C(21)-Fe(2)- $C(23)$	92.7(8)
Cu(2)-Cu(1)-Fe(4)	142.60(9)	Cu(5)-Cu(2)-S(6)	60.5(1)	Cu(2)-Cu(5)-S(4)	112.3(1)	C(22)-Fe(2)-C(23)	100(1)
Cu(2) - Cu(1) - Fe(5)	85.74(8)	Fe(1) - Cu(2) - Fe(6)	132.6(1)	Cu(2) = Cu(5) = S(6)	52.4(1)	Cu(3)-Fe(3)-Fe(4)	90.40(9)
Cu(2) - Cu(1) - S(4)	113.7(1)	Fe(1) - Cu(2) - S(1)	55.6(1)	Cu(2)-Cu(5)-P(2)	142.8(2)	Cu(3) - Fe(3) - S(3)	52.9(1)
Cu(2)-Cu(1)-S(5)	69.6(1)	Fe(1) - Cu(2) - S(6)	125.7(2)	Cu(3) - Cu(5) - S(2)	52.4(1)	Cu(3) - Fe(3) - S(4)	69.1(1)
Cu(2) - Cu(1) - S(6)	47.0(2)	Fe(6) = Cu(2) = S(1)	122.5(1)	Cu(3)-Cu(5)-S(4)	67.6(1)	Cu(3) - Fe(3) - C(31)	118.7(5)
Cu(3)-Cu(1)-Cu(4)	56.78(7)	Fe(6) = Cu(2) = S(6)	55.4(1)	Cu(3) - Cu(5) - S(6)	112.4(1)	Cu(3) - Fe(3) - C(32)	145.5(5)
Cu(3) - Cu(1) - Cu(5)	57.79(7)	S(1) = Cu(2) = S(6)	177.8(2)	Cu(3) = Cu(5) = P(2)	140.1(2)	Cu(3) - Fe(3) - C(33)	68.5(5)
Cu(3)-Cu(1)-Fe(4)	83.94(8)	Cu(1) - Cu(3) - Cu(2)	59.94(7)	S(2) - Cu(5) - S(4)	113.1(2)	Fe(4) - Fe(3) - S(3)	50.3(1)
Cu(3) = Cu(1) = Fe(3)	145.12(9)	Cu(1) - Cu(3) - Cu(4)	57.70(7)	S(2) - Cu(5) - S(6)	115.1(2)	Fe(4) - Fe(3) - S(4) Fe(4) - Fe(3) - C(31)	58.0(1)
Cu(3) = Cu(1) = S(4)	$\frac{07.7(1)}{112.7(1)}$	Cu(1) = Cu(3) = Cu(3)	57.00(7)	S(2) - Cu(3) - P(2)	103.7(2)	Fe(4) - Fe(3) - C(31) Fe(4) - Fe(3) - C(32)	101.0(5)
Cu(3) = Cu(1) = S(3)	113.7(1)	Cu(1) - Cu(3) - Fe(2)	142.8(1)	S(4) = Cu(5) = S(6)	112.7(2)	Fe(4) - Fe(3) - C(32) Fe(4) - Fe(3) - C(32)	97.7(0)
Cu(3) = Cu(1) = S(6)	97.5(2)	Cu(1) - Cu(3) - Fe(3)	85.98(8)	S(4) = Cu(5) = P(2)	104.1(2)	Fe(4) - Fe(3) - C(33)	157.0(6)
Cu(4) - Cu(1) - Cu(5)	102.49(9)	Cu(1) = Cu(3) = S(2)	112.3(1)	S(6) = Cu(5) = P(2)	100.9(2)	S(3) - Fe(3) - S(4) S(3) = Fe(3) - C(31)	85.5(2)
Cu(4) = Cu(1) = Fe(4) Cu(4) = Cu(1) = Fe(5)	95.15(9)	Cu(1) - Cu(3) - S(3) Cu(2) - Cu(3) - Cu(4)	57.9(1)	Cu(2) = Fe(1) = Fe(2)	90.30(9) 52.6(1)	S(3) - Fe(3) - C(31) S(3) = Fe(3) - C(32)	63.0(0) 152.6(5)
Cu(4) = Cu(1) = Fe(3)	113.37(9)	Cu(2) - Cu(3) - Cu(4)	57.15(7)	Cu(2) = Fe(1) = S(1)	52.0(1)	S(3) - Fe(3) - C(32) S(3) = Fe(3) - C(32)	132.0(3)
Cu(4) = Cu(1) = S(4)	60.3(1)	Cu(2) - Cu(3) - Cu(3)	S7.19(8) 84 20(8)	Cu(2) = Fe(1) = S(2)	147.7(5)	S(3) - Fe(3) - C(33) S(4) - Fe(3) - C(31)	158 8(5)
Cu(4) = Cu(1) = S(6)	100.3(1)	Cu(2) = Cu(3) = Fe(2) Cu(2) = Cu(3) = Fe(3)	144.78(0)	Cu(2) = Fe(1) = C(11)	147.7(5)	S(4) = Fe(3) = C(31) S(4) = Fe(3) = C(32)	87 1(5)
Cu(4) = Cu(1) = S(0) Cu(5) = Cu(1) = Ee(4)	114.4(1)	Cu(2) = Cu(3) = FC(3)	67.4(1)	Cu(2) - Fe(1) - C(12)	67.2(6)	S(4) = Fe(3) = C(32) S(4) = Fe(3) = C(33)	104 1 (6)
Cu(5) - Cu(1) - Fe(5)	98 10(9)	Cu(2) = Cu(3) = S(2) Cu(2) = Cu(3) = S(3)	1137(1)	$E_{1}(2) = F_{1}(1) = C_{1}(1)$	56.2(0)	C(31) = Fe(3) = C(32)	92 6(8)
Cu(5) = Cu(1) = S(4)	61.1(1)	Cu(2) = Cu(3) = S(3) Cu(4) = Cu(3) = Cu(5)	103 17(9)	Fe(2) = Fe(1) = S(1) Fe(2) = Fe(1) = S(2)	57.9(1)	C(31) = Fe(3) = C(32)	97 1(8)
Cu(5) = Cu(1) = S(5)	122.6(1)	Cu(4) = Cu(3) = Eu(3)	95.6(1)	Fe(2) = Fe(1) = G(2)	96 5(6)	C(32) = Fe(3) = C(33)	95 4(8)
Cu(5) - Cu(1) - S(6)	53.7(2)	Cu(4) - Cu(3) - Fe(3)	113 69(9)	Fe(2) - Fe(1) - C(12)	104.5(5)	$C_{1}(1) - Fe(4) - Fe(3)$	90.65(9)
Fe(4)-Cu(1)-Fe(5)	130.85(9)	Cu(4) - Cu(3) - S(2)	119.8(1)	Fe(2) - Fe(1) - C(13)	155.2(6)	Cu(1)-Fe(4)-S(3)	70.7(1)
Fe(4)-Cu(1)-S(4)	55.4(1)	Cu(4) - Cu(3) - S(3)	60.5(1)	S(1)-Fe(1)-S(2)	84.8(2)	Cu(1)-Fe(4)-S(4)	51.7(1)
Fe(4)-Cu(1)-S(5)	121.2(1)	Cu(5)-Cu(3)-Fe(2)	112.81(9)	S(1) - Fe(1) - C(11)	150.8(6)	Cu(1)-Fe(4)-C(41)	116.3(6)
Fe(4)-Cu(1)-S(6)	161.9(1)	Cu(5)-Cu(3)-Fe(3)	98.6(1)	S(1)-Fe(1)-C(12)	85.8(5)	Cu(1)-Fe(4)-C(42)	147.3(6)
Fe(5)-Cu(1)-S(4)	125.8(1)	Cu(5)-Cu(3)-S(2)	59.3(1)	S(1)-Fe(1)-C(13)	112.0(7)	Cu(1)-Fe(4)-C(43)	67.8(5)
Fe(5)-Cu(1)-S(5)	55.2(1)	Cu(5)-Cu(3)-S(3)	123.2(1)	S(2) - Fe(1) - C(11)	88.2(6)	Fe(3) - Fe(4) - S(3)	57.5(1)
Fe(5)-Cu(1)-S(6)	48.9(1)	Fe(2)-Cu(3)-Fe(3)	130.7(1)	S(2)-Fe(1)-C(12)	162.1(6)	Fe(3)-Fe(4)-S(4)	56.5(1)
S(4)-Cu(1)-S(5)	176.4(2)	Fe(2)-Cu(3)-S(2)	55.5(1)	S(2)-Fe(1)-C(13)	102.1(6)	Fe(3)-Fe(4)-C(41)	101.2(6)
S(4)-Cu(1)-S(6)	108.4(2)	Fe(2)-Cu(3)-S(3)	122.2(1)	C(11)-Fe(1)-C(12)	92.7(7)	Fe(3)-Fe(4)-C(42)	98.9(6)
S(5)-Cu(1)-S(6)	74.9(1)	Fe(3)-Cu(3)-S(2)	125.1(1)	C(11)-Fe(1)-C(13)	97.2(9)	Fe(3)-Fe(4)-C(43)	157.6(5)
Cu(1)-Cu(2)-Cu(3)	59.61(6)	Fe(3)-Cu(3)-S(3)	55.3(1)	C(12)-Fe(1)-C(13)	95.4(9)	S(3)-Fe(4)-S(4)	85.3(2)
Cu(1)–Cu(2)–Cu(4)	57.46(7)	S(2)-Cu(3)-S(3)	177.6(2)	Cu(3)-Fe(2)-Fe(1)	90.83(9)	S(3)-Fe(4)-C(41)	158.4(7)
Cu(1)-Cu(2)-Cu(5)	57.65(7)	Cu(1)-Cu(4)-Cu(2)	65.49(8)	Cu(3)-Fe(2)-S(1)	70.4(1)	S(3)-Fe(4)-C(42)	88.3(6)
Cu(1)-Cu(2)-Fe(1)	143.4(1)	Cu(1)-Cu(4)-Cu(3)	65.48(8)	Cu(3)-Fe(2)-S(2)	51.8(1)	S(3)-Fe(4)-C(43)	107.4(5)
Cu(1)-Cu(2)-Fe(6)	83.79(8)	Cu(1)Cu(4)S(1)	114.8(1)	Cu(3)-Fe(2)-C(21)	112.4(5)	S(4)-Fe(4)-C(41)	84.6(7)
Cu(1)-Cu(2)-S(1)	113.2(1)	Cu(1)Cu(4)S(3)	70.9(1)	Cu(3)-Fe(2)-C(22)	151.4(6)	S(4)-Fe(4)-C(42)	153.7(6)
Cu(1)-Cu(2)-S(6)	67.0(1)	Cu(1)-Cu(4)-S(5)	52.8(1)	Cu(3)-Fe(2)-C(23)	67.4(6)	S(4) - Fe(4) - C(43)	109.6(5)
Cu(3)-Cu(2)-Cu(4)	56.59(7)	Cu(1)-Cu(4)-P(1)	140.7(2)	Fe(1)-Fe(2)-S(1)	57.7(1)	C(41)-Fe(4)-C(42)	92.5(8)
Cu(3)-Cu(2)-Cu(5)	57.56(7)	Cu(2)-Cu(4)-Cu(3)	66.28(8)	C(41)-Fe(4)-C(43)	94.0(8)	Cu(5)-S(2)-Fe(2)	137.7(2)
Cu(3)-Cu(2)-Fe(1)	85.24(8)	Cu(2)-Cu(4)-S(1)	53.3(1)	C(42)-Fe(4)- $C(43)$	96.8(8)	Fe(1) = S(2) = Fe(2)	66.1(1)
Cu(3)-Cu(2)-Fe(6)	141.58(9)	Cu(2)-Cu(4)-S(3)	115.7(1)	Cu(1) - Fe(5) - Fe(6)	90.29(9)	Cu(3) - S(3) - Cu(4)	66.3(1)
Cu(3) - Cu(2) - S(1)	68.9(1) 112.7(1)	Cu(2) - Cu(4) - S(5)	70.8(1)	Cu(1) - Fe(5) - S(5)	52.7(1)	Cu(3) - S(3) - Fe(3)	108.0(2)
Cu(3) = Cu(2) = S(6)	112.7(1)	Cu(2) = Cu(4) = P(1) Cu(2) = Cu(4) = S(1)	138.5(2)	Cu(1) = Fe(5) = S(6)	143.8(6)	Cu(3) - S(3) - Fe(4)	106.9(2)
Cu(4) = Cu(2) = Cu(5)	103.01(9)	Cu(3) - Cu(4) - S(1)	71.1(1)	Cu(1) = Fe(5) = C(51)	143.6(0)	Cu(4) = S(3) = Fe(3) Cu(4) = S(3) = Fe(4)	133.0(2) 112.5(2)
Cu(4) - Cu(2) - Fe(1) Cu(4) - Cu(2) - Fe(1)	113.04(9)	Cu(3) = Cu(4) = S(3)	33.3(1)	Cu(1) = Fe(5) = C(52)	68 5 (5)	Cu(4) = S(3) = Fc(4) Eq(3) S(3) Eq(4)	663(1)
Cu(4) = Cu(2) = Fc(0) Cu(4) = Cu(2) = S(1)	59 7(1)	Cu(3) - Cu(4) - S(3) Cu(3) - Cu(4) - P(1)	14.7(1) 144.2(2)	$E_{a}(1) = F_{a}(5) = C(55)$	561(1)	Cu(1) = S(4) = Cu(5)	66 9(1)
Cu(4) = Cu(2) = S(1) Cu(4) = Cu(2) = S(6)	1197(1)	S(1) = Cu(4) = S(3)	115.9(2)	Fe(6) = Fe(5) = S(6)	58.3(1)	Cu(1) = S(4) = Eu(3)	110.4(2)
S(1) = Cu(4) = S(5)	115.7(1) 115.9(2)	S(1) = Cu(4) = S(3) Fe(1) = Fe(2) = S(2)	561(1)	Fe(6) - Fe(5) - C(51)	98.2(6)	Cu(1) - S(4) - Fe(4)	72.9(1)
S(1)-Cu(4)-P(1)	102.3(2)	Fe(1)- $Fe(2)$ - $C(21)$	105.0(5)	Fe(6) - Fe(5) - C(52)	101.7(6)	Cu(5)-S(4)-Fe(3)	113.7(2)
S(3)-Cu(4)-S(5)	114.7(1)	Fe(1) - Fe(2) - C(22)	95.2(6)	Fe(6) - Fe(5) - C(53)	157.7(5)	Cu(5)-S(4)-Fe(4)	136.4(2)
S(3)-Cu(4)-P(1)	105.1(2)	Fe(1)-Fe(2)-C(23)	156.2(6)	S(5)-Fe(5)-S(6)	85.1(2)	Fe(3)-S(4)-Fe(4)	65.5(1)
S(5)-Cu(4)-P(1)	100.0(2)	S(1)-Fe(2)-S(2)	84.8(2)	S(5)-Fe(5)-C(51)	153.4(6)	Cu(1)-S(5)-Cu(4)	66.9(1)
Cu(1)-Cu(5)-Cu(2)	64.94(8)	S(1)-Fe(2)-C(21)	162.7(5)	S(5)-Fe(5)-C(52)	85.6(6)	Cu(1)-S(5)-Fe(5)	72.2(1)
Cu(1)-Cu(5)-Cu(3)	64.55(8)	S(1)-Fe(2)-C(22)	89.4(6)	S(5)-Fe(5)-C(53)	111.2(5)	Cu(1)-S(5)-Fe(6)	109.3(2)
Cu(1)-Cu(5)-S(2)	112.5(1)	S(1)-Fe(2)-C(23)	103.8(7)	S(6)-Fe(5)-C(51)	86.2(6)	Cu(4)-S(5)-Fe(5)	135.6(2)
Cu(1)-Cu(5)-S(4)	52.0(1)	S(2)-Fe(2)-C(21)	84.4(5)	S(6)-Fe(5)-C(52)	159.8(6)	Cu(4)–S(5)–Fe(6)	112.1(2)
			(continued)				(continued

Table 4 (continued)

S(6) - Fe(5) - C(53)	105.3(5)	Fe(5)-S(5)-Fe(6)	66.2(1)
C(51)-Fe(5)-C(52)	94.2(9)	Cu(1) - S(6) - Cu(2)	66.0(1)
C(51)-Fe(5)-C(53)	95.4(9)	Cu(1)-S(6)-Cu(5)	58.8(2)
C(52)-Fe(5)-C(53)	95.0(8)	Cu(1)-S(6)-Fe(5)	62.5(1)
Cu(2)-Fe(6)-Fe(5)	91.05(9)	Cu(1)-S(6)-Fe(6)	90.6(2)
Cu(2)-Fe(6)-S(5)	70.7(1)	Cu(2) - S(6) - Cu(5)	67.1(1)
Cu(2)-Fe(6)-S(6)	51.9(1)	Cu(2)-S(6)-Fe(5)	111.3(2)
Cu(2)-Fe(6)-C(61)	145.8(6)	Cu(2) - S(6) - Fe(6)	72.8(1)
Cu(2)-Fe(6)-C(62)	115.6(7)	Cu(5) - S(6) - Fc(5)	114.9(2)
Cu(2)-Fe(6)-C(63)	67.3(5)	Cu(5)-S(6)-Fe(6)	136.7(2)
Fe(5)-Fe(6)-S(5)	57.7(1)	Fe(5)-S(6)-Fe(6)	65.7(1)
Fe(5)-Fe(6)-S(6)	56.0(1)	Fe(6)C(61)O(61)	174(2)
Fe(5)-Fe(6)-C(61)	97.3(5)	Fe(6)-C(62)-O(62)	176(2)
Fe(5)-Fe(6)-C(62)	102.0(6)	Fe(6)-C(63)-O(63)	173(2)
Fe(5)-Fe(6)-C(63)	157.1(5)	Cu(4)-P(1)-C(111)	116.1(6)
S(5)-Fe(6)-S(6)	84.7(2)	Cu(4)-P(1)-C(121)	114.0(6)
S(5)-Fe(6)-C(61)	86.0(6)	Cu(4)-P(1)-C(131)	113.7(6)
S(5)-Fe(6)-C(62)	159.5(7)	C(111)-P(1)-C(121)	103.6(7)
S(5)-Fe(6)-C(63)	105.9(6)	C(111)-P(1)-C(131)	103.1(8)
S(6)-Fe(6)-C(61)	152.5(5)	C(121)-P(1)-C(131)	105.2(8)
S(6)-Fe(6)-C(62)	85.1(6)	Cu(5)-P(2)-C(211)	115.5(6)
S(6)-Fe(6)-C(63)	110.3(6)	Cu(5)-P(2)-C(221)	113.6(6)
C(61)-Fe(6)-C(62)	95.1(8)	Cu(5)-P(2)-C(231)	114.6(6)
C(61)-Fe(6)-C(63)	97.1(8)	C(211)-P(2)-C(221)	102.7(7)
C(62)-Fe(6)-C(63)	94.2(8)	C(211)–P(2)–C(231)	105.9(8)
Cu(2)-S(1)-Cu(4)	67.1(1)	C(221)-P(2)-C(231)	103.3(8)
Cu(2)-S(1)-Fe(1)	71.8(1)	Fe(1)-C(11)-O(11)	179(3)
Cu(2)-S(1)-Fe(2)	109.3(2)	Fe(1)-C(12)-O(12)	178(2)
Cu(4)-S(1)-Fe(1)	135.1(2)	Fe(1)-C(13)-O(13)	169(2)
Cu(4)-S(1)-Fe(2)	112.0(2)	Fe(2)-C(21)-O(21)	175(2)
Fe(1)-S(1)-Fe(2)	66.1(1)	Fe(2)-C(22)-O(22)	176(2)
Cu(3)–S(2)–Cu(5)	68.5(1)	Fe(2)-C(23)-O(23)	167(2)
Cu(3)-S(2)-Fe(1)	111.1(2)	Fe(3)C(31)-O(31)	178(2)
Cu(3)-S(2)-Fe(2)	72.7(1)	Fe(3)-C(32)-O(32)	179(2)
Cu(5)-S(2)-Fe(1)	113.8(2)	Fc(3)-C(33)-O(33)	170(2)
Fe(5)–C(51)–O(51)	179(3)	Fe(4)–C(41)–O(41)	179(2)
Fe(5)-C(52)-O(52)	177(2)	Fe(4)-C(42)-O(42)	174(2)
Fe(5)-C(53)-O(53)	170(2)	Fe(4)-C(43)-O(43)	166(2)

Numbers in parentheses are e.s.d.s in the least significant digits.

3.2. Synthesis of 1 and possible reaction pathway for the formation of 1 in solution

Cluster 1 was synthesized by the reaction of $Li_2[Fe_2S_2(CO)_6]$ with $[Et_4N][CuCl_2PPh_3]$ in MeCN/THF as shown in Eq. (1). It is obvious that the reaction

$$5[Et_4N][CuCl_2PPh_3] + 3Li_2[Fe_2S_2(CO)_6] =$$

$$[Et_4N][Fe_6Cu_5S_6(CO)_{18}(PPh_3)_2] + 6LiCl$$

$$+ 4Et_4NCl + 3PPh_3$$
(1)

only involves condensation with elimination of LiCl and substitution of Cl and PPh₃ ligands because the Fe and Cu atoms in cluster 1 maintain the same oxidation states as in the starting materials.

A careful examination of the structural parameters of cluster 1, reveals several traces which indicate its formation process. (i) Cluster 1 contains two kinds of Cu–S bond distances (Table 6) for the copper atoms at the apex and on the triangle of the central trigonal bipyramid, and the Cu-S bond lengths (2.453 Å) for the apex Cu are much greater than those for the Cu atoms on the triangle (2.249 Å). This indicates that the core of cluster 1 consists of two kinds of moieties, one is $Fe_6S_6Cu_3$ (Fig. 3, F) which is composed of three $Fe_2S_2(CO)_6$ units and three Cu atoms located on the triangle of a trigonal bipyarmid, and the other is two apex Cu atoms with the PPh₃ ligand. (ii) The six Cu-S bond distances in the moiety F are divided into two groups of values (three of 2.243 Å and three of 2.254 Å) in a regular arrangement. This is evidence that the moiety F should come from three identical Fe₂S₂Cu moieties (Fig. 3, G). Therefore on the basis of the structural traces seen in cluster 1 it is suggested that a possible reaction pathway for its formation in solution includes steps of condensation, trimerization and capping via the formation of two reactive fragments H and I which possess the same cores as the moieties G and F, respectively.

$$3\text{Li}_{2}[\text{Fe}_{2}\text{S}_{2}(\text{CO})_{6}] + 3[\text{Et}_{4}\text{N}][\text{CuCl}_{2}\text{PPh}_{3}] \xleftarrow{\text{condensation}}{}$$
$$3[\text{Et}_{4}\text{N}]\text{Li}[\text{Fe}_{2}\text{CuS}_{2}(\text{CO})_{6}\text{ClPPh}_{3}] + 3\text{LiCl}$$
$$\mathbf{H}$$
$$(2)$$

$$3[Et_4N]Li[Fe_2CuS_2(CO)_6ClPPh_3] \xleftarrow{} I$$

$$[Et_4N]_3[Fe_6Cu_3(CO)_{18}S_6] + 3LiCl + 3PPh_3 \quad (3)$$

$$I$$

trimerizatio

$$[Et_4N]_3[Fe_6Cu_3(CO)_{18}S_6] + 2[Et_4N][CuCl_2PPh_3] \xrightarrow{\text{capping}} \\ [Et_4N][Fe_6Cu_5(CO)_{18}S_6(PPh_3)_2] + 4Et_4NCl \\ 1$$
(4)

As shown in Eqs. (2), (3) and (4), the reaction of $Li_2[Fe_2S_2(CO)_6]$ with $[Et_4N][CuCl_2PPh_3]$ by elimination of LiCl results in a condensation product, reactive fragment **H**, and three **H** undergo further trimerization by elimination of LiCl, substitution of PPh₃ and conversion of some of the terminal carbonyls to bridging carbonyls affording the nona-nuclear reactive

Fig. 1. The ORTEP drawing of the anion of [Et₄N][Fe₆Cu₅(CO)₁₈S₆(PPh₃)₂] (1) with omission of benzene rings in the PPh₃ group.

fragment I. I reacts with $[Et_4N][CuCl_2PPh_3]$ by capping two CuPPh₃ moieties leading to the final cluster 1. Thus, although cluster 1 was prepared by a spontaneous self-assembly reaction of simple starting materials, it should actually form via a 'unit construction' [38] using the reactive fragments as building blocks.

4. Conclusions

The first Fe-Cu-S cluster compound $[Et_4N][Fe_6Cu_5-(CO)_{18}S_6(PPh_3)_2]$ (1) was prepared by the reaction of

Fig. 2. The Fe-Cu-S core in $[Fe_6Cu_5(CO)_{18}S_6(PPh_3)_2]^-$.

 $[Fe_2S_2(CO)_6]^{2-}$ with $[CuCl_2PPh_3]^{-}$. A structural study reveals that 1 contains a *closo*-type undeca-nuclear core with a new coordination mode of the $Fe_2S_2(CO)_6$ units and it retains the vestiges of the formation process of the cluster. A possible reaction pathway including condensation, trimerization and capping steps via the formation of two reactive fragments is suggested.

Acknowledgements

This research was supported by the grants from the NNSFC (National Natural Science Foundation of China) and CPNKPFR (Climbing Program, National Key Project for Fundamental Research).

Table 5				
Selected structural	parameters	of	Fe ₂ S ₂ (CO) ₆ -containing	complexes

Complexes	Fe–Fe (Å)	Fe–S (Å)	Fe–S–Fe (°)	
		2 222(2) 2 228(4)	(0 (7/12) 70 08/11)	[22]
$[Fe_2S_2(CO)_6]$	2.552(2)	2.222(3)-2.238(4)	09.07(12)-70.08(11)	[32]
$[MoOFe_5S_6(CO)_{12}]^{2-}$	2.480(3) - 2.434(3)	2.246(5)-2.286(5)	65.9(5)-67.3(5)	[17]
$[MoFe_5S_6(CO)_6(PEt_3)_3]$	2.564(5)			[33]
$[MoFe_4S_3(CO)_{13}(PEt_3)_3]^{2-1}$	2.553(3)	2.274(5)-2.286(5)	68.1(1)	[26]
$[MoFe_{3}S_{6}(CO)_{6}]^{2-}$	2.491(4)	2.301(6)-2.318(6)		[34]
$[Fe_6Cu_5S_6(CO)_{18}(PPh_3)_2]^{-1}$	2.517(4)-2.532(4)	2.292(5)-2.353(6)	65.5(1)-66.3(1)	this work
$[Fe_6S_6(CO)_{12}]^{2-}$	2.499(1)	2.315(2)-2.337(2)		[17b]
$[Fe_{6}S_{6}(CO)_{12}]^{2-}$	2.499(1)	2.315(2)-2.337(2)		[17b]

Table 6

Bond distances	(Å)	of	Cu-S	in	cluster	compound	1
----------------	-----	----	------	----	---------	----------	---

Cu _A -S	2.431(4); 2.444(5); 2.493(4); 2.470(4);	2.457(4) 2.424(4)
Cu _T -S	2.246(5); 2.247(5); 2.252(5); 2.256(5);	2.235(4) 2.255(5)

 Cu_A -Cu atoms at the apex of the central trigonal bipyramid Cu_5 . Cu_T -Cu atoms on the triangle of the central trigonal bipyramid Cu_5 .

Fig. 3. The $Fe_6C_6Cu_3$ (F) and Fe_2CuS_2 (G) moieties of the core in cluster 1.

References

- [1] D. Coucouvanis, Acc. Chem. Res., 14 (1981) 201.
- [2] A. Muller, E. Diemann, R. Jostes and H. Bogge, Angew. Chem., Int. Ed. Engl., 20 (1981) 934.
- [3] R.H. Holm, Chem. Soc. Rev., 10 (1981) 455.
- [4] P.A. Eldredge, R.F. Bryan, E. Sinn and B.A. Averill, J. Am. Chem. Soc., 110 (1988) 5573.
- [5] C.D. Garner, S.R. Acost, G. Christou, D. Collison, F.E. Mabbs, V. Petrouleas and C.J. Dickett, in A. Muller and W.E. Newton (eds.), *Nitrogen fixation: The Chemical-Biochemical-Genetic Interface*, Plenum, New York, 1983, p. 245.
- [6] E. Furimsky, Catal. Rev., Sci. Eng., 22 (1980) 371.
- [7] M.R. DuBois, R.C. Haltiwanger, D.J. Miller and G. Glatzmaier, J. Am. Chem. Soc., 101 (1979) 5245.
- [8] M.R. DuBois, M.C. VanDerveer, D.L. DuBois, R.C. Haltiwanger and W.K. Miller, J. Am. Chem. Soc., 102 (1980) 7456.
- [9] T. Knuger, B. Krebs and G. Henkel, Angew. Chem., Int. Ed. Engl., 28 (1989) 61.
- [10] G. Henkel, M. Kriege and K. Matsumoto, J. Chem. Soc., Dalton Trans., (1988) 657.

- [11] I. Noda, B.S. Sayder and R.H. Holm, Inorg. Chem., 25 (1986) 3851.
- [12] D. Fenske, J. Hachgenei and J. Ohmer, Angew. Chem., Int. Ed. Engl., 24 (1985) 706.
- [13] D. Coucouvanis, M.G. Kanatzidis, W.R. Dunham an W.R. Hagen, J. Am. Chem. Soc., 106 (1986) 998.
- [14] D. Seyferth, R.S. Henderson and L.C. Song, Organometallics, 1 (1982) 125.
- [15] (a) H. Vahrenkamp and E.J. Wucherer, Angew. Chem., Int. Ed. Engl., 93 (1981) 715; (b) D.A. Lesch and T.B. Rauchfuss, Inorg. Chem., 22 (1983) 1854; (c) D. Chakrabarty, M. d. M. Hossain and P. Mathur, J. Organomet. Chem., 401 (1991) 167; (d) P. Mathur, I.J. Mavunkal, V. Rugmini and M.F. Mabon, Inorg. Chem., 29 (1990) 4838.
- [16] D. Seyferth, R.S. Henderson and M.K. Gallagher, J. Organomet. Chem., 193 (1980) C75.
- [17] (a) K.S. Bose, P.E. Lamberty, J.E. Kovacs, E. Sinn and B.A. Averill, *Polyhedron*, 5 (1986) 393; (b) G.L. Lilley, E. Sinn and B.A. Averill, *Inorg. Chem.*, 25 (1986) 1073.
- [18] I.L. Eremenko, A.A. Pasynskii, A.S. Katagin, V.R.G. Dwitch, B. Orazsakhatov, S.A. Sleptsova, A.I. Nekhaev, V.V. Kaverin, O.G. Ellert, V.M. Novotortsev, A.I. Yanovsky, V.E. Shklover and Yu.T. Struckov, J. Organomet. Chem., 365 (1989) 325.
- [19] V.W. Day, D.A. Lesch and T.B. Rauchfuss, J. Am. Chem. Soc., 104 (1982) 1290.
- [20] J.A. Kovacs, J.K. Bashkin and R.H. Holm, *Polyhedron*, 6 (1987) 1445.
- [21] C.H. Wei and L.F. Dahl, Inorg. Chem., 4 (1965) 493.
- [22] B. Zhuang, P. Chen, L. Huang and J. Lu, Polyhedron, 11 (1992) 127.
- [23] R.D. Adams, J.E. Babin, J.G. Wang and W. Wu, *Inorg. Chem.*, 28 (1989) 703.
- [24] Y. Wakatsuki and H. Yamazaki, J. Organomet. Chem., 347 (1988) 151.
- [25] P. Mathur, D. Chakrabarty, M.M. Hossain, R.S. Rashid, V. Rugmini and L. Rheingold, *Inorg. Chem.*, 31 (1992) 1106.
- [26] P.A. Eldredge, K.S. Bose, D.E. Barber, R.F. Bryan, E. Sinn, A. Rheingold and B.A. Averill, *Inorg. Chem.*, 30 (1991) 2365.
- [27] H. Vahrenkamp and E.J. Wucherer, Angew. Chem., Int. Ed. Engl., 20 (1981) 680.
- [28] A.B. Graham, J. Wang, D.H. Robert, H.W. Allan and C.H. Peter, J. Chem. Soc., Dalton Trans., (1992) 787.
- [29] R.C.G. Killean and J.L. Lawrence, Acta Crystallogr., Sect. B, 25 (1969) 1750.
- [30] D.W.J. Cruickshank, Acta Crystallogr., 2 (1949) 154.
- [31] B.A. Frenz, The Enraf-Nonius CAD4 SDP a real-time system for concurrent X-ray data collection and crystal structure determination, in R. Schenk, R. Olthof Hazelkamp, H. Vankonigsveld and G.C. Bassi (eds.), *Computing in Crystallography*, Delft University Press, Delft, Netherlands, 1978, pp. 64–71.
- [32] C.H. Wei and L.F. Dahl, Inorg. Chem., 4 (1965) 1.

- [33] K.S. Bose, S.A. Chmielewski, P.A. Eldredge, E. Sinn and B.A. Averill, J. Am. Chem. Soc., 111 (1989) 8953.
- [34] J.A. Kovacs, J.K. Bashkin and R.H. Holm, *Polyhedron*, 6 (1987) 1445.
- [35] K.S. Bose, E. Sinn and B.A. Averill, Organometallics, 3 (1984) 1126.
- [36] N.S. Nametkin, V.D. Tyurin, G.G. Aleksandrov, O.V. Kuz'min, A.I. Nekhaev, V.G. Andrianov, M. Mavlonov and Yu.T. Struchkov, *Izv. Akad. Nauk SSSR, Ser. Khim.*, (1979) 1353.
- [37] A.Q. Tang and Q.S. Li, Kexue Tongbao, 28 (1983) 25.
- [38] J.-X. Lu and B. Zhuang, Jiegou Huaxie (J. Struct. Chem.), 8 (1989) 233.