

Inorganica Chimica Acta

Inorganica Chimica Acta 228 (1995) 251-254

Note

Effects of substitutions on cyclopentadienyl rings in complexes with molybdenum-mercury bonds. ⁹⁵Mo and ¹⁹⁹Hg NMR studies

Mercedes Cano^a, Jose A. Campo^a, Elena Pinilla^{a,b}, Angeles Monge^b, Roger Pichon^c, Jean-Yves Salaün^c, Paul L'Haridon^d, Jan Szymoniak^e, Marek M. Kubicki^{e,*}

* Departamento de Chimica Inorganica, Facultad de Ciencias Quimicas, Universidad Complutense, 28040 Madrid, Spain ^b Laboratorio de Difraccion de Rayos X, Facultad de Ciencias Quimicas, Universidad Complutense and Instituto de Materiales, C.S.I.C.,

Serrano 113, Madrid, Spain

^c Laboratoire de Chimie, Electrochimie et Photochimie Moléculaires associé au CNRS (URA 322), Université de Bretagne Occidentale, 29287 Brest, France

^d Laboratoire de Chimie Minérale C associé au CNRS (URA 254), Université de Rennes-Beaulieu, 35042 Rennes, France ^e Laboratoire de Synthèse et d'Electrosynthèse Organométalliques associé au CNRS (URA 1685), Université de Bourgogne, 21000 Dijon, France

Received 4 February 1994; revised 15 June 1994

Abstract

NMR data for ⁹⁵Mo and ¹⁹⁹Hg nuclei have been obtained for new di- and trimetallic complexes $Cp'(CO)_3MoHgX$ containing molybdenum-mercury bonds and bulky and/or potentially bifunctional substituted cyclopentadienyl ligands; $Cp' = C_3HMe_2Ph_2$, C_5Me_4Bz , C_5Bz_5 , $C_5H_4PPh_2$ and $C_5Me_4PPh_2$ ($Bz = CH_2C_6H_5$; $Me = CH_3$; $Ph = C_6H_5$); $X = Cp'(CO)_3Mo$, Cl, Br, I, SCN. They are discussed within the context of our earlier results reported for analogous complexes with the cyclopentadienyl ligands bearing methyl groups. With the exception of phenyl substituted rings, a rather narrow range of ⁹⁵Mo chemical shifts is found for the compounds with the same number of different substituents on cyclopentadienyl ligands. An outstanding shielding of ¹⁹⁹Hg nuclei, observed in complexes bearing the rings with Bz, PPh_2 and Ph substituents instead of the methyls, is assigned to the intramolecular substituent-mercury interactions.

Keywords: Molybdenum complexes; Cyclopentadienyl-substituted complexes; ⁹⁵Mo NMR; ¹⁹⁹Hg NMR

1. Introduction

A great number of mono- and poly-substituted cyclopentadienyl systems bearing the donor as well as the acceptor functions has been prepared recently [1]. The effects of varying the Cp substituents on the spectroscopic features, chemical reactivity and stereochemistry have been observed. However, although cyclopentadienyls are a common ligand type, few systematic studies of such effects have been performed [2,3].

We have been interested for some years in the systematic NMR qualitative study of metallic nuclei in $Cp'(CO)_2LMoHgX$ molybdenum-mercury bonded com-

plexes bearing different ligands L [4] and differently substituted cyclopentadienyl rings [5]. For $Cp'(CO)_3MoHgX$ complexes $(Cp'=C_5H_5, C_5H_4Me,$ C_5HMe_4 , C_5Me_5 , C_5HPh_4 ; X = Cl, Br, I, $Cp'(CO)_3Mo$) we concluded that generally (i) the upfield shifts of ¹⁹⁹Hg are accompanied by lower field shifts of ⁹⁵Mo, (ii) the better donors X shield ¹⁹⁹Hg and (iii) the better donors Cp' deshield ⁹⁵Mo. For complexes with $Cp' = C_5 HPh_4$, we suggested that intramolecular interactions may be present in solution between the phenyl groups of the cyclopentadienyl ring and the mercury atom. This last observation inspired us to undertake an analogous study on new related systems bearing bulky and/or potentially bifunctional Cp' ligands like $C_5HMe_2Ph_2$ (series 1), C_5Me_4Bz (2), C_5Bz_5 (3),

^{*} Corresponding author.

 $C_5H_4PPh_2$ (4) and $C_5Me_4PPh_2$ (5) (Bz = $CH_2C_6H_5$; Me = CH_3 ; Ph = C_6H_5).

2. Experimental

The new complexes were prepared by methods analogous to those described in the literature, starting from $Mo(CO)_6$ and the corresponding cyclopentadienides [6] and $Hg(CN)_2$, followed by reactions of the resulting trimetallic complexes $[Cp'(CO)_3Mo]_2Hg$ with a stoichiometric amount of HgX_2 . The products were recrystallized from dichloromethane/hexane or acetone solutions. Correct elemental analyses were obtained from Elemental Micro-Analysis Ltd. Laboratories (Devon, UK).

For determination of NMR spectra, the solutions close to saturation were made up under nitrogen in dried and degassed CH_2Cl_2 containing C_6D_6 as internal reference and these were sealed in a 10 mm tube. NMR spectra were recorded on a JEOL FX 100 spectrometer at ambient temperature as described elsewhere [5]. Aqueous Na₂MoO₄ (2 M) at pH 11 and neat HgMe₂ were used as external references.

3. Results and discussion

NMR data for complexes 1–5 with X=Cl, Br, I, SCN and Cp'(CO)₃Mo are given in Table 1. In order to give a better idea of electronic and steric effects exerced by the Cp' ligands on metallic nuclei selected results from our earlier publication [5] are as follows: ⁹⁵Mo and ¹⁹⁹Hg chemical shift data (ppm) for trimetallic complexes [Cp'(CO)₃Mo]₂Hg: Cp'=C₅H₅ (6-Mo) –1834, +236; C₅H₄Me (7-Mo) –1795, +229; C₅HMe₄ (8-Mo) –1666, +209; C₅Me₅ (9-Mo) –1631, +192; C₅HPh₄ (10-Mo) –1547, -4.

The ⁹⁵Mo chemical shifts for the new compounds lie between -1542 and -1794 ppm, well in the region observed in related cyclopentadienyl molybdenum complexes with a single Mo-M' (M'=Hg, Sn, Pb, Mo) bond [5,7]. For a given Cp' ligand, the ⁹⁵Mo chemical shifts depend not only on its nature but also on that of X, running upfield in the order SCN < I < Br < Cl < Mo(CO)₃Cp'.

The ¹⁹⁹Hg chemical shifts lie between +139 and -1169 ppm. A similar range has been observed in other related transition metal-Hg derivatives [4,5,8]. The ¹⁹⁹Hg chemical shifts for complexes with the same Cp' ligand decrease to higher fields in the order Cp'(CO)₃Mo < SCN < Cl < Br < I, which is the same as that reported for HgX₂ and MeHgX compounds [9].

A representative plot of $\delta(^{199}\text{Hg})$ against $\delta(^{95}\text{Mo})$ chemical shifts for trimetallic complexes with Mo-Hg-Mo linkage (compounds 1-Mo to 10-Mo, Table

Table	1				
NMR	data	for	new	Cp'(CO) ₃ MoHgX	complexes

Ср′	х	Com- plex	¹ H (ppm)	⁹⁵ Mo (ppm)	$\Delta \nu_{1/2}$ (Hz)	¹⁹⁹ Hg (ppm)	$\Delta \nu_{1/2}$ (Hz)
		-	· · · ·	··· /			. ,
$C_5HMe_2Ph_2$	Mo *	1-Mo	2.06	- 1641	200	+ 98	25
			5.37				
	Cl	1-Cl	2.13	-1621	100	- 644	25
	_		5.80				
	Br	1-Br	2.12	- 1604	100	- 827	10
	-		5.75				
	1	1-1	2.10	-1583	15	- 1169	25
	0.001	• •	5.67	1505		50.4	=0
	SCN	1-5	2.17	- 1585	15	- 504	70
C) (+ D-	M - 8	2.14-	5.81	1/2/	100	. 120	15
C ₅ Me ₄ Bz	M0 -	2-M 0	2.05	- 1030	100	+139	15
			2.09				
	C	2 (1	3.90	1595	50		10
	CI	2- CI	2.10	- 1385	50	- 005	12
			2.15				
	Br	2.Br	2.09	1572	30	809	12
	Di	2-D1	2.05	1572	50	009	12
			3.88				
	I	2-I	2.06	- 1560	50	1064	35
	-		2.08	1000	20	1001	00
			3.86				
	SCN	2-S	2.13	-1542	70	- 506	35
			2.17				
			3.94				
C ₅ Bz ₅	Mo "	3-Mo	3.92	- 1619	200	+ 49	40
	CI	3-Cl	3.89	- 1598	160	-672	55
	Br	3-Br	3.88	- 1594	40	-852	20
	I	3-I	3.85	- 1563	75	1169	25
	SCN	3-S	3.92	b	ь	- 523	50
C₅H₄PPh ₂	Mo ^a	4-Mo		- 1794	140	+ 109 °	75
C ₅ Me ₄ PPh ₂	Mo ^a	5-Mo	1.50	- 1624	95	+ 27 ^d	18
			1.54				
	Cl	5-Cl	1.53	- 1582	228	-676 °	25
			1.56				
	I	5-I	1.51	- 1562	310	- 1141 ^f	52
			1.55				

^a Mo = $Mo(CO)_3Cp'$.

^b Not observed.

^c Triplet J(Hg-P) = 45 Hz, $\delta^{31}P = -17.8$ ppm.

^d Triplet J(Hg-P) = 28 Hz, $\delta^{31}P = -17.0$ ppm.

^e Doublet J(Hg-P) = 37 Hz, $\delta^{31}P = -13.3$ ppm.

^f Doublet J(Hg-P) = 24 Hz; $\delta^{31}P = -18.1$ ppm.

1, see above) is shown in Fig. 1. Examination of Fig. 1 shows the following features: (i) a narrow range of ⁹⁵Mo chemical shifts for complexes with five substituents on the C_5 ring; a similar observation can be made for compounds with a single substitution on the cycle, but only two complexes belong to this class (4-Mo and 7-Mo); (ii) a shielding of ¹⁹⁹Hg nuclei in complexes bearing the rings with Bz, PPh₂ and Ph substituents instead of methyls; (iii) a deshielding of ⁹⁵Mo in the presence of Ph groups (1-Mo and 10-Mo).

The applications and the effectiveness of substituted cyclopentadienyl rings arise from a contribution of steric and electronic factors, as often invoked in phosphine

Fig. 1. δ (¹⁹⁹Hg) vs. δ (⁹⁵Mo) chemical shifts in trimetallic Mo-Hg-Mo bonded complexes (i-Mo).

Fig. 2. δ (⁹⁵Mo) chemical shifts vs. Cp' cone angles Θ in selected Mo-Hg-Mo (i-Mo) complexes.

complexes [10]. The size of the Cp' ligand is certainly a factor which influences the geometry of the molecule and consequently may be responsible for a stabilization or destabilization of the atomic orbitals of the metallic center involved in the bonding. An evaluation of the sizes of differently substituted Cp rings has been proposed recently by Coville et al. [3]. The reported cone angles (O) are 128° (C5H5), 141° (C5H4Me), 194° (C_5Me_5) and 150° (C_5H_4Bz) , from which the values of 181°, 203° and 238° are derived for C5HMe4, C5Me4Bz and C5Bz5 rings, respectively. A roughly linear correlation between the ⁹⁵Mo chemical shifts and the cone angles Θ is observed for methyl substituted rings. It is shown for trimetallic complexes (i-Mo) in Fig. 2. However, this correlation no longer holds for the compounds with benzyl substituted rings. The cone angle values are much larger now, but the fields of ⁹⁵Mo resonances are close to the values observed for complexes with a permethylated (C_5Me_5) ring. This suggests that the steric effects of the benzyl substituent are negligible and that the electronic influences of the CH₃ and CH₂Ph substituents are similar. The electronic factor therefore seems to determine the shielding of ⁹⁵Mo in our complexes.

Moreover, the preliminary results obtained by extended Hückel calculations on Cp'(CO)₃MoHgCl complexes show a systematic decrease of ΔE (taken as the HOMO-LUMO energy gap) parameter ¹ on going from $Cp' = C_5H_5$ (6-Cl, 2.205 eV) through C_5H_4Me (7-Cl, 2.187 eV), C₅HMe₄ (8-Cl, 2.164 eV) to C₅Me₅ (9-Cl, 2.158 eV) [11]. Even in the absence of calculations for complexes bearing the benzyl substituted rings, it seems reasonable to conclude that the ⁹⁵Mo chemical shifts are more sensitive to the electronic nature of the Cp' ring than to its steric influence. Better electron donors increase the electron density on the molybdenum atom and the energies of the occupied molecular orbitals. Consequently, the LUMO-HOMO energy gap decreases, and the absolute value of paramagnetic contribution $\sigma_{\rm p}$ increases, leading to a low field resonance of the molybdenum nucleus.

We mentioned that for a given number of substituents the ⁹⁵Mo resonances vary little, but that those of ¹⁹⁹Hg are shifted to higher fields in the presence of Ph, Bz and PPh₂ substituents. It has been observed, that the ¹⁹⁹Hg nuclei resonate at higher fields in donor solvents than in the inert ones for compounds HgMe₂, RHgX [12] and $[Cp(CO)_{3}Mo]_{2}Hg$ (+115 ppm in DMSO [13] versus + 236 ppm in CHCl₃ [4a]). The stronger shielding of ¹⁹⁹Hg is due to a donor (solvent)-acceptor (Hg) interaction. By analogy with these solvent-mercury interactions, we suggest that the higher fields of the ¹⁹⁹Hg resonances observed in complexes 1-5 are due to the intramolecular donor (substituent)-acceptor (Hg) effects. Such intramolecular interactions may be considered as the through-space ones. This seems to be confirmed by the phosphorus-mercury couplings of 24 to 45 Hz observed in complexes 4 and 5 (Table 1). Moreover, an inspection of the data given in Table 1 shows that the ¹⁹⁹Hg nuclei are more sensitive to the electronic effects of substituents in trimetallic complexes with Mo-Hg-Mo linkage (more than 200 ppm region is covered in the presence of tetra- and penta-substituted rings) than in chlorides, where the overall range of ¹⁹⁹Hg does not exceed 70 ppm. This observation would confirm the through-space nature of the intramolecular interactions. They are stronger in trimetallic Mo-Hg-Mo complexes, where two Cp' ligands may give rise to the interactions with mercury atom, than in dimetallic

¹ The paramagnetic contribution (σ_p) to the overall shielding of nuclei in polyelectronic atoms is given by the relation: $\sigma_p(A) \approx -\Delta E^{-1} \langle r^{-3} \rangle Q$.

Mo-Hg-X systems in which only one Cp' ligand is present.

The crystal structures of two complexes with phenyl substituted rings ([($C_5HMe_2Ph_2$)(CO)₃MoHgI] (1-I) and [(C_5HPh_4)(CO)₃Mo]₂Hg (10-Mo)) have been determined by X-ray diffraction². The shortest mercury-carbon(phenyl group) distances are rather long (about 4 Å). However, the ring substituent-mercury intramolecular interactions may exist even in the solid state, because the anisotropic magnetic currents associated with unsaturated ligands operate at long distances [14]. These interactions should be stronger in solution, where rotations of both the cyclopentadienyl and the phenyl rings are allowed.

Further theoretical and NMR studies on $Cp'(CO)_2LMoHgX$ complexes with electron-withdrawing substituents on C_5 rings are currently in progress.

4. Supplementary material

ORTEP drawings, atomic coordinates and selected bond distances and angles for both structures are available from author M.M.K. on request.

References

- [1] N.J. Coville, K.E. du Plooy and W. Pickl, Coord. Chem. Rev., 116 (1992) 1, and refs. therein.
- [2] (a) M.D. Rausch, W.M. Tsai, J.W. Chambers, R.D. Rogers and H.G. Alt, Organometallics, 8 (1989) 816; (b) D.L. Lichtenberger, S.K. Renshaw, F. Basolo and M. Cheong, Organometallics, 10 (1991) 148; (c) P.G. Gassman, P.A. Deck, C. H. Winter, D.A. Dobbs and D.H. Cao, Organometallics, 11 (1992) 959; (d) R.J. Hoobler, M.A. Hutton, M.M. Dillard, M.P. Castellani, A.L. Rheingold, A.L. Rieger, P.H. Rieger, T.C. Richards and W.E. Geiger, Organometallics, 12 (1993) 116; (e) C. Saadeh,

S.B. Colbran, D.C. Craig and A.D. Rae, Organometallics, 12 (1993) 133; (f) L.D. Field, A.F. Masters, M. Gibson, D.R. Latimer, T.W. Hambley and I.E. Buys, Inorg. Chem., 32 (1993) 211; (g) M. Arthurs, J.C. Bickerton, G. Kubal, J. O'Sullivan, C. Piper, G. Hogharth and D.A. Morton-Blacke, J. Organomet. Chem., 467 (1994) 135.

- [3] N.J. Coville, M.S. Loonat, D. White and L. Carlton, Organometallics, 11 (1992) 1082.
- [4] (a) M.M. Kubicki, R. Kergoat, J.Y. Le Gall, J.E. Guerchais, J. Douglade and R. Mercier, Aust. J. Chem., 35 (1982) 1543;
 (b) M. Cano, J.A. Campo, J.Y. Le Gall, R. Pichon, J.Y. Salaün and M.M. Kubicki, Inorg. Chim. Acta, 193 (1992) 207.
- [5] M.M. Kubicki, J.Y. Le Gall, R. Pichon, J.Y. Salaün, M. Cano and J.A. Campo, J. Organomet. Chem., 348 (1988) 349.
- [6] (a) R.D. Fisher and K. Noack, J. Organomet. Chem., 16 (1969) 125; (b) P. Yates, N. Yoda, W. Brown and B. Mann, J. Am. Chem. Soc., 80 (1958) 202; (c) H. Schumann, C. Janiak and H. Khani, J. Organomet. Chem., 330 (1987) 347; (d) F. Mathey and J.P. Lampin, Tetrahedron, 31 (1975) 2685; (e) J. Szymoniak, J. Besançon, A. Dormond and C. Moïse, J. Org. Chem., 55 (1990) 1429; (f) M.J. Mays and J.D. Robb, J. Chem. Soc. A, (1968) 329.
- [7] (a) J.Y. Le Gall, M.M. Kubicki and F.Y. Petillon, J. Organomet. Chem., 221 (1981) 287; (b) C.G. Young, M. Minelli, J.H. Enemark, G. Miessler, N. Janietz, H. Kauerman and J. Wachter, Polyhedron, 5 (1986) 407; (c) M.M. Kubicki, J.Y. Le Gall, R. Kergoat and L.C. Gomes de Lima, Can. J. Chem., 65 (1987) 1292; (d) M. Minelli, J.H. Enemark, R.T.C. Brownlee, M.J. O'Connor and A.G. Wedd, Coord. Chem. Rev., 68 (1985) 169.
- [8] (a) M.J. Albright and J.P. Oliver, J. Organomet. Chem., 172 (1979) 99; (b) M.M. Kubicki, R. Kergoat, J.Y. De Vanssay, J.Y. Le Gall and J.E. Guerchais, Polyhedron, 3 (1984) 1984; (c) J.D. Cotton and E.A. Miles, Inorg. Chim. Acta, 173 (1990) 129.
- [9] R.G. Kidd and R.J. Goodfellow, in R.K. Harris and B.E. Mann (eds.), NMR and the Periodic Table, Academic Press, London, 1978, pp. 266–278.
- [10] (a) C.A. Tolman, Chem. Rev., 77 (1977) 313; (b) S.P. Nolan and C.D. Hoff, J. Organomet. Chem., 290 (1985) 365; (c) A.G. Orpen and N.G. Connelly, Organometallics, 9 (1990) 1206; (d) E.C. Alyea, S.A. Dias, G. Ferguson and R.J. Restivo, Inorg. Chem., 16 (1977) 2329; (e) E.C. Alyea and S. Song, Inorg. Chem., 31 (1992) 4909.
- [11] M.M. Kubicki and P. Boudot, unpublished results.
- [12] R.J. Goodfellow, in J. Mason (ed.), *Multinuclear NMR*, Plenum, New York, 1987, Ch. 21, p. 581.
- [13] M.J. Albright, M.D. Glick and J.P. Oliver, J. Organomet. Chem., 161 (1978) 221.
- [14] (a) E.F. Kiefer and W. Gericke, J. Am. Chem. Soc., 90 (1968) 5131, and refs. therein; (b) J. Ronayne and D.H. Williams, J. Chem. Soc., Chem. Commun., (1966) 712.

² (C₅HMe₂Ph₂)(CO)₃MoHgI (1-I): triclinic, $P\bar{1}$, a = 7.431(4), b = 10.966(3), c = 13.763(10) Å, $\alpha = 75.73(9)$, $\beta = 83.58(7)$, $\gamma = 82.88(7)^{\circ}$, Z = 2, $D_x = 2.330$ g cm⁻³, R = 0.060, Mo-Hg = 2.686(3) Å); [(C₅HPh₄)(CO)₃Mo]₂Hg (10-Mo): monoclinic, C2/c, a = 27.291(7), b = 9.338(3), c = 22.708(9) Å, $\beta = 96.14(3)^{\circ}$, Z = 4, $D_x = 1.500$ g cm⁻³, R = 0.047, Mo-Hg = 2.722(1) Å. See also Section 4.