

Inorganica Chimica Acta 229 (1995) 315-322

Inorganica Chimica Acta

Synthesis and structure of tris[dihydrobis(pyrazolyl)borate](tetrahydrofuran)uranium(III), $U[H(\mu-H)Bpz_2]_3(THF)$: three-center B-H···U(III) interactions in the presence of coordinated THF ligand $\stackrel{\text{}_{\Rightarrow}}{\approx}$

Yimin Sun^a, Josef Takats^{a,*}, Todd Eberspacher^b, Victor Day^{b,*}

^a Department of Chemistry, University of Alberta, Edmonton, Alta., T6G 2G2, Canada ^b Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, USA

Received 30 June 1994; revised 20 September 1994

Abstract

Reaction of UI₃(THF)₄ with three equivalents of KH₂Bpz₂ gives the complex U[H(μ -H)Bpz₂]₃(THF) (1). The molecular structure has been determined by single-crystal X-ray diffraction: monoclinic, space group $P2_1/c$, a = 10.662(2), b = 13.586(3), c = 20.868(6) Å, $\beta = 103.32(2)^\circ$, V = 2941(1) Å³ and Z = 4. The six nitrogen donor atoms of the chelating H₂Bpz₂⁻ ligands are arranged in a slightly distorted trigonal prismatic geometry. Two of the H₂Bpz₂⁻ ligands span triangular edges on a single square face of the trigonal prism, while the third spans the edge common to the remaining two square faces. The oxygen atom of the coordinated THF ligand caps one of the square faces. The remaining two rectangular faces and one of the two triangular faces of the trigonal prism are capped by three-center two-electron B-H···U bridge bonds, providing an effective ten-coordinate U(III) center. The observation of low frequency B-H stretching bands is in accord with the presence of these interactions. In solution the molecule is fluxional. Although the rearrangement is nearly stopped at -100 °C, its nature could not be elucidated. Repeated cycles of dissolution of 1 in toluene and solvent removal yield the THF-free complex U[H(μ -H)Bpz₂]₃ (2). The molecule is also fluxional. The activation energy for equilibration of the BH₂ hydrogens is 51 kJ mol⁻¹.

Keywords: Crystal structures; Uranium complexes; Dihydrobis(pyrazolyl)borate complexes; Agostic BHU interaction

1. Introduction

The poly(pyrazolyl)borate ligands provide a flexible and versatile coordination environment for both transition metal ions [1] and the f-elements [2]. For the large f-elements the chemistry has been dominated by the hydrotris(pyrazolyl)borate ligands (HBpz'₃⁻, pz' = substituted pyrazolyl). However, recently a series of interesting complexes with dihydrobis(pyrazolyl)borate ligands has been described. Reger et al. [3] reported the synthesis of Y[H(μ -H)Bpz₂]₃ and Y[H(μ -H)B(3,5-Me₂pz)₂]₃ and determined the solid state structure of the former complex. Domingos and co-workers [4] have demonstrated that the complexes M[H(μ -H)B(3,5-Me₂pz)₂]₃ (M=U, Ce, Sm, Yb) also featured three-center $B-H \cdots M$ bridge type interactions and tricapped trigonal prismatic geometry.

Since steric effect plays a dominant role in determining the coordination number and geometry of f-element complexes it was of interest to determine what effect, if any, the less bulky $H_2Bpz_2^-$ ligand will have on the nature of the tris-chelate U(III) complex. Reported here is the characterization and X-ray structure of the product obtained when UI₃(THF)₄ is reacted with three equivalents of KH₂Bpz₂.

2. Experimental

2.1. General procedure

All operations were carried out in a nitrogen-filled Vacuum Atmospheres HE-553-2 DRI LAB or using

 $[\]ddagger$ This paper is dedicated to Professor F.A. Cotton on the occasion of his 65th birthday.

^{*} Corresponding authors.

Schlenk techniques in conjunction with a double manifold. Solvents were dried over potassium benzophenone ketyl (THF) or Na/K alloy benzophenone ketyl (Et_2O); they were distilled and degassed prior to use. Deuterated solvents were dried over Na/K alloy and distilled.

The ligand KH_2Bpz_2 and $UI_3(THF)_4$ were prepared according to published methods [5,6].

IR spectra were recorded on a BOMEM MB-100 FT spectrometer using samples pressed into KBr pellet. NMR spectra were recorded on either a Bruker WH-200 or AM-400 FT spectrometer using flame-sealed tubes. Elemental analysis were performed by the Microanalytical Laboratory, Department of Chemistry, University of Alberta.

2.2. Synthesis of $U[H(\mu-H)Bpz_2]_3(THF)$ (1)

To a slurry of UI₃(THF)₄ (183 mg, 0.202 mmol) in THF (4 ml) was added a solution of KH₂Bpz₂ (113 mg, 0.606 mmol) in THF (2 ml). The mixture was stirred for 2 h. Inverse filtration through a cannula gave a dark red solution and almost quantitative white precipitate of KI. The THF solvent was removed under vacuum and the residue was washed with hexane (2 ml). Complex 1 was isolated as a dark, almost black solid in 73% yield. Crystals could be obtained by redissolving in Et₂O (4 ml) and cooling the concentrated solution at -40 °C for a few days. IR (KBr, cm⁻¹) ν (B-H): 2430, 2283, 2251. ¹H NMR (toluene-d₈, 23 °C) δ (ppm): 21.02, 10.01, 9.57 (H, pz), 1.67, 0.82 (CH₂, THF); ¹¹B NMR (toluene-d₈, 23 °C) δ (ppm): -19.2. Anal. Calc. for C₂₂H₃₂N₁₂B₃OU: C, 35.18; H, 4.29; N, 22.38. Found: C, 35.05; H, 4.55; N, 21.85%.

2.3. Synthesis of $U[H(\mu-H)Bpz_2]_3$ (2)

Complex 1 was dissolved in toluene (1 ml) and the solvent was removed under vacuum, the process was repeated twice. The residue was triturated with hexane (2 ml) and dried under vacuum. Complex 2 was obtained as a black solid in 66% yield. IR (KBr, cm⁻¹) ν (B–H): 2432, 2292, 2238. ¹H NMR (toluene-d₈, 23 °C) δ (ppm): 22.44, 9.76, 9.60 (*H*, pz); ¹¹B NMR (toluene-d₈, 23 °C) δ (ppm): -21.5. *Anal*. Calc. for C₁₈H₂₄N₁₂B₃U: C, 31.84; H, 3.56; N, 24.76. Found: C, 32.36; H, 3.44; N, 23.94%.

2.4. Variable temperature NMR studies

The studies were carried out on a Bruker AM-400 FT spectrometer using tubes that were flame-sealed under vacuum. Temperature measurements were made with a Bruker B-VT 1000 temperature control unit.

Due to the presence of the paramagnetic U(III) center the ¹H chemical shifts are temperature dependent. The chemical shifts of the μ -BH and BH protons of complex 2 in the absence of exchange at the coa-

lescence temperature were calculated from a plot of δ (ppm) versus 1/T; ¹H NMR (toluene-d₈) δ (ppm): (253 K) 29.31 (μ -BH), 1.10 (BH); (213 K) 33.36 (μ -BH), 1.24 (BH); (203 K) 34.90 (μ -BH), 1.39 (BH); (193 K) 36.65 (μ -BH), 1.59 (BH). The relevant data are: coalescence temperature (T_c) 40±10 °C (313 K); δ (ppm) 24.75 (μ -BH), 0.78 (BH) and $\delta\nu$ =9600 Hz. The free energy of activation based on the formula $\Delta G_c^{\star} = 1.914 \times 10^{-2} T$ [9.972+log($T/\delta\nu$)] kJ mol⁻¹ [7] is 51 kJ mol⁻¹.

2.5. Crystallographic analysis

Single crystals of U[H(μ -H)B(N₂C₃H₃)₂]₃(OC₄H₈)(1) are, at 20±1 °C, monoclinic, space group $P2_1/c-C_{2h}^5$ (No. 14) with a = 10.662(2), b = 13.586(3), c = 20.868(6)Å, $\beta = 103.32(2)^{\circ}$, V = 2941(1) Å³, Z = 4 formula units $(D_{\text{calc}}=1.696 \text{ g cm}^{-3}; \mu(\text{Mo } \text{K}\tilde{\alpha})=5.56 \text{ mm}^{-1}).$ The computer programs and procedures used for data collection, data reduction, structure solution and refinement of 1 have been reported elsewhere [8]; a summary of the crystallographic data for the present study is given in Table 1. A total of 5396 independent reflections having 2θ (Mo K $\bar{\alpha}$) < 50.8° (the equivalent of 0.8 limiting Cu K $\tilde{\alpha}$ spheres) was collected on a computer-controlled Nicolet autodiffractometer using full (0.90° wide) ω scans and graphite-monochromated Mo $K\bar{\alpha}$ radiation. The intensity data were corrected empirically for variable absorption effects using ψ scans for 6 reflections having 2θ (Mo K $\bar{\alpha}$) between 8.64 and 25.64°. The structure was solved using 'heavy atom' Patterson techniques with the Siemens SHELXTL-PC software package. The resulting structural parameters have been refined to convergence $(R_1 \text{ (unweighted, based on } F) = 0.042 \text{ for}$ 3311 independent reflections having 2θ (Mo K $\bar{\alpha}$) < 50.8° and $I > 3\sigma(I)$ using counter-weighted full-matrix leastsquares techniques and a structural model which incorporated anisotropic thermal parameters for all nonhydrogen atoms and isotropic thermal parameters for all hydrogen atoms. Even though it was possible to locate the hydrogens on all three boron atoms from difference Fourier syntheses and satisfactorily vary their positions in least-squares refinement cycles, their refined positions gave a sufficiently distorted geometry at the borons that it was decided to place the hydrogens at idealized sp³-hybridized positions with a B-H bond length of 1.01 Å and only refine their isotropic thermal parameters. Each hydrogen which is covalently bonded to a carbon was included in the structural model at the fixed idealized sp² position with a C-H bond length of 0.96 Å and assigned an isotropic thermal parameter which was 1.2 times the equivalent isotropic thermal parameter of its carbon atom.

Summary of crystallographic data for $U[H(\mu-H)B(N_2C_3H_3)_2]_3(OC_4H_8)$ (1)

Table 1

Empirical formula	$U[H(\mu-H)B(N_2C_3H_3)_2]_3(OC_4H_8)$
Color of crystal	black
Crystal dimensions (mm)	$0.20 \times 0.43 \times 0.50$
Crystal system	monoclinic
Space group	$P2_1/c-C_{2h}^5$ (No. 14)
Cell dimensions	
$a(\mathbf{A})$	10.662(2)
b (Å)	13.586(3)
$c(\dot{A})$	20.868(6)
β (°)	103.32(2)
Z (formula units)	4
Volume (Å ³)	2941(1)
Calculated density ($g \text{ cm}^{-3}$)	1.696
Wavelength (Å)	0.71073
Molecular weight	751.06
Linear absorption coefficient (mm ⁻¹)	5.56
Empirical absorption correction	ψ scans for 6 reflections
Range of relative transmission factors	0.297-1.000
Scan type	ω
Average ω scan width at half height (°)	0.38
Scan speed (°/min)	6.0-3.0
Scan width (°)	0.90
2θ Range (°)	3.0-50.8
Total no. reflections collected	5564
No. unique reflections	5396
No. with $I > 3\sigma(I)$	3311
R (unweighted, based on F)	0.042
$R_{\rm w}$ (weighted, based on F)	0.049
Data to parameter ratio	9.2:1
Goodness of fit for the last cycle	1.100
Largest and mean shift/error	0.012, 0.000
Largest difference peaks (e ⁻ Å ⁻³)	1.09-0.83
(all within 1.04 Å of U atom)	

3. Results and discussion

3.1. Synthesis and spectroscopic characterization

Reaction of a slurry of UI₃(THF)₄ with three equivalents of KH₂Bpz₂ gave U[H(μ -H)Bpz₂]₃(THF) (1) in good yield, Eq. (1). Complex 1 is a dark, almost black solid, very soluble in THF and toluene, soluble in UI₃(THF)₄ + 3KH₂Bpz₂ $\xrightarrow{\text{THF/r.t.}}$

$$U[H(\mu-H)Bpz_2]_3THF + 3KI \quad (1)$$
1

Et₂O, but only sparingly soluble in hexane. Elemental analysis is consistent with the presence of one THF molecule per uranium center. An attempt to remove the THF by heating the compound at 70 °C under dynamic vacuum was unsuccessful, however, repeated cycles of dissolution of 1 in toluene and solvent removal do result in the THF-free complex, $U[H(\mu-H)Bpz_2]_3$ (2).

The IR spectrum of 1 in the solid state shows a complex B-H stretching pattern at 2430 and \sim 2282, 2251 cm⁻¹. The higher frequency band can be assigned to a normal terminal B-H stretch, while the bands at

lower frequencies are indicative of bridging B-H \cdots U(III) interactions. A similar type of interaction has been described by Domingos and co-workers in U[H(μ -H)B(3,5-Me₂pz)₂]₃ (3), although the shifts in 1 are smaller than those found in the latter complex [4] $(B-H \cdots U \text{ stretches are at } 2270, 2240, 2190, 2090 \text{ cm}^{-1}).$ We propose that coordination of the THF ligand causes increased steric and electronic saturation of the U(III) center in 1 and weakens the $B-H\cdots U$ interaction. The B-H stretching region of the unsolvated complex U[H(μ -H)Bpz₂]₃ (2) shows a main band at 2432 cm⁻¹ (B-H terminal) with a broad multiplet envelope extending down to 2219 cm⁻¹. The presence of low frequency features is expected based on the analogous 3,5-dimethylpyrazolyl borate complex 3. Unfortunately, a comparison between the nature and strength of the agostic B-H \cdots U(III) interactions between complexes 2 and 3 is not possible due to the ill-defined shape of the broad envelope.

The ¹H NMR spectrum of 1 shows only one set of signals for the protons of the pyrazolyl rings and one for the THF molecule. The resonances of the latter are shifted from their normal diamagnetic positions and provide further indication for THF coordination. The observation of only one set of resonances is indicative of fluxional behavior. The ¹¹B NMR spectrum also shows only a single peak, consistent with the ¹H NMR results. The fluxional nature of 1 was ascertained by a variable temperature ¹H NMR study. Decoalescence of the signals is observed around -60 °C, but the low temperature limiting spectrum could not be reached even at -100 °C. Thus the mechanism of the rearrangement process remains unknown.

The ¹H NMR spectrum of complex 2 at room temperature also shows one set of resonances for the pyrazolyl protons (22.44, 9.76 and 9.60 ppm), but contrary to the behavior of complex 3 the BH₂ signal could not be detected. In view of this observation and the known fluxional nature of complexes 1 and 3 a variable temperature ¹H NMR study was carried out (Fig. 1). Interestingly, already at -20 °C two distinct B-H resonances were detected at 29.31 and 1.10 ppm. The signals were assigned to $B-H \cdots U(III)$ bridge and B-Hterminals units, respectively, on the basis of the much broadened and more shifted nature of the former signal being under the influence of the paramagnetic U(III) center. Warming the sample to 80 °C resulted in the emergence of a broad averaged BH₂ signal at δ 12.7 ppm, a value close to that observed for the averaged BH_2 signal in the dimethylpyrazolyl analogue 3 [4]. The

lineshape changes are temperature reversible and we calculate a free energy of activation at the coalescence temperature ($T_c = 313$ K) of 51 kJ mol⁻¹ for the process that equilibrates the environments of the two B-H hydrogens. It is interesting to note that Reger et al. [3] reported a very similar energetic barrier for the same process in Y[H(μ -H)Bpz₂]₃, 47.7 kJ mol⁻¹. However in that case the energetics were based on ¹³C NMR data of slightly different pyrazolyl rings in the solution ground state structure; the BH₂ hydrogens could not be differentiated in this diamagnetic molecule even at low temperature. The observation of well separated B-H signals in 2 for a virtually identical ΔG^* is of course due to the paramagnetic U(III) center and represents another interesting example of chemical shift expansion in paramagnetic complexes to the study of fast rate processes [9]. Finally we note that the ¹H NMR spectrum of $U[H(\mu-H)B(3,5-Me_2pz)_2]_3$ (3) showed only one broad BH₂ resonance down to 210 K [4]. It thus appears that the agostic $B-H \cdots U(III)$ interactions are stronger in complex 2 than in 3; this may not be unexpected in view of the more sterically crowded nature of the dimethylpyrazolyl derivative 3.

Fig. 1. Variable temperature ¹H NMR spectra (400 MHz) of U[H(μ -H)Bpz₂]₃ (2) in toluene-d₈ (*); the spectrum at -60 °C is ¹H{¹¹B}.

3.2. Molecular structure of $U[H(\mu-H)Bpz_2]_3(THF)$ (1)

In order to corroborate the presence of the B-H \cdots U(III) interaction and to determine the precise geometry of the molecule, a single crystal X-ray analysis was performed. The analysis revealed that in the solid state complex 1 is composed of discrete $U[H(\mu -$ H)Bpz₂]₃(THF) molecules (Fig. 2) in which each U(III) ion is coordinated to a pair of nitrogens from each of the three bidentate H₂Bpz₂⁻ ligands and the oxygen of a THF ligand. As shown in Fig. 3, the THF oxygen caps one square face of a (necessarily) distorted trigonal prismatic coordination polyhedron described by the sixcoordinated nitrogens. The three $H_2Bpz_2^-$ ligands span two triangular edges and one square edge of this trigonal prism. The pair of ligands which span the triangular edges occupy opposite sides of a square face not capped by the THF ligand; the third bidentate H₂Bpz₂⁻ ligand spans the vertical edge which is common to the remaining two square faces. Consistent with the solid-state IR data mentioned above, each of the H₂Bpz₂⁻ ligands engages in a three-center two-electron B-H···U agostic bonding interaction by folding along its edge of the coordination polyhedron, buckling the six-membered UN₄B ring [10] and tipping the B-H group toward the metal. This results in hydrogen atoms which cap three of the remaining four uncapped faces of the trigonal prism. As shown in Fig. 3, the 'lower' triangular face of the trigonal prism is the only 'uncapped' face. H1bb caps the 'upper' triangular face and H2bb and H3bb

Fig. 2. Perspective drawing of the solid-state structure for $U[H(\mu-H)Bpz_2]_3$ (THF) (1). For purposes of clarity, uranium atoms are represented by large cross-hatched spheres, oxygen and nitrogen atoms are represented by medium-sized shaded spheres, and carbon and hydrogen atoms are represented by medium-sized and small open spheres, respectively. The U–O and agostic B–H···U bonds are represented by thick dashed lines. C–H and B–H bond lengths at 1.09 and 1.14 Å, respectively, were used to produce this drawing. Selected hydrogen atoms are labeled in this drawing.

Fig. 3. Perspective drawing of the solid-state structure for $U[H(\mu-H)Bpz_2]_3(THF)$ (1) with the trigonal prismatic coordination polyhedron included. Ligand atoms are represented as in Fig. 2 and connected with thin-line bonds. The U–O and agostic B–H···U bonds are represented by thick dashed lines.

cap square faces. $U[H(\mu-H)Bpz_2]_3(THF)$ is therefore formally ten-coordinate in the solid state and probably in solution as well. Fractional atomic coordinates for all non-hydrogen atoms of 1 are given with e.s.d.s in Table 2. Selected bond lengths and angles involving non-hydrogen atoms of 1 are given in Table 3. Ligand...ligand contacts on the coordination sphere of crystalline 1 are given in Table 4.

As shown in Fig. 4, the capped 'square' faces of the trigonal prism are defined by the following three groups of four nearly coplanar nitrogen atoms: I: N2a, N2b, N2d, N2e, coplanar to 0.07 Å; II: N2a, N2d, N2g, N2h, coplanar to 0.08 Å; III: N2b, N2a, N2g, N2h, coplanar to within 0.12 Å. Least-squares mean planes through these 'square' groups of atoms make the following dihedral angles with each other: I–II, 57.9°; I–III, 71.0°; II–III, 51.6°. The triangular faces of the polyhedron are within 3.1° of being parallel. The 'upper' triangle defined by N2a, N2b and N2h makes dihedral angles of 81.4, 85.7 and 85.7° with the mean planes for 'squares' I, II and III, respectively; the 'lower' triangle defined by N2d, N2e and N2g makes dihedral angles of 78.5, 85.1 and 87.7° with them.

The THF oxygen atom is displaced by 1.96 Å out of its 'square' face and capping hydrogen atoms H2bb and H3bb are displaced by 1.81 and 1.75 Å, respectively, out of theirs. H1bb is displaced by 1.66 Å out of the 'upper' triangular face. The U–O bond length is 2.625(8) Å and the U···H distances average 3.00(-, 8, 11, 3)Å. (A fixed B–H bond length of 1.14 Å was used for these calculations.)

Table 2

Atomic coordinates for non-hydrogen atoms in crystalline U[H(μ -H)B(N₂C₃H₃)₂]₃(OC₄H₈) (1) *

Atom	Fractional coordinates			Equivalent isotropic	
type	10 ⁴ x	10 ⁴ y	10 ⁴ z	B^{c} (Å ² ×10)	
U	2419(1)	2253(1)	1803(1)	26(1)	
B1	4421(12)	1333(11)	886(8)	37(4)	
N1a	3232(9)	683(6)	692(5)	32(3)	
N2a	2202(8)	873(7)	938(5)	33(3)	
C3a	1338(11)	190(8)	699(7)	39(3)	
C4a	1788(14)	- 418(9)	283(7)	53(4)	
C5a	3007(12)	- 97(9)	288(6)	41(4)	
N1b	4149(9)	2407(8)	624(5)	38(3)	
N2b	3470(9)	3019(7)	931(5)	37(3)	
C3b	3310(14)	3867(10)	574(7)	49(4)	
C4b	3954(16)	3797(13)	76(9)	69(6)	
C5b	4399(14)	2865(12)	103(7)	54(4)	
B2	-313(13)	2854(11)	596(7)	39(4)	
N1d	- 814(9)	2205(7)	1099(5)	36(3)	
N2d	46(8)	1723(7)	1588(5)	37(3)	
C3d	- 661(11)	1206(9)	1914(7)	43(4)	
C4d	- 1962(12)	1327(10)	1650(8)	51(5)	
C5d	- 1996(10)	1957(9)	1146(7)	44(4)	
N1e	135(9)	3830(7)	919(4)	35(3)	
N2e	1140(8)	3876(7)	1451(5)	36(3)	
C3e	1310(11)	4827(8)	1626(7)	43(4)	
C4e	419(12)	5396(9)	1192(7)	47(4)	
C5e	- 304(12)	4750(9)	771(7)	43(4)	
B3	3919(15)	3791(10)	2999(7)	43(4)	
N1g	2689(10)	3526(7)	3222(5)	39(3)	
N2g	1788(10)	2923(7)	2853(5)	42(3)	
C3g	858(15)	2819(10)	3184(7)	53(4)	
C4g	1152(19)	3324(13)	3757(8)	73(7)	
C5g	2293(17)	3741(11)	3778(8)	63(5)	
N1h	4847(9)	2940(7)	3090(5)	41(3)	
N2h	4617(9)	2160(7)	2664(5)	39(3)	
C3h	5560(12)	1511(9)	2895(8)	52(5)	
C4h	6392(13)	1855(12)	3438(8)	58(5)	
C5h	5906(12)	2756(11)	3553(6)	47(4)	
0	2483(8)	625(6)	2486(4)	40(2)	
C2s	2672(15)	605(10)	3200(8)	59(5)	
C3s	3032(20)	- 431(13)	3381(8)	85(7)	
C4s	2900(29)	-999(12)	2849(9)	139(12)	
C5s	2628(19)	- 356(9)	2268(9)	77(6)	
Idealized	i BH ₂ hydrog	en positions '	1		
H1ba	5220	1003	673		
H1bb	4742	1351	1446		
H2ba	-1126	2989	144		
H2bb	522	2471	441		
H3ba	4405	4445	3298		
H3bb	3646	3989	2453		

* The numbers in parentheses are the e.s.d.s in the last significant digit.

^b Atoms are labeled in agreement with Figs. 2-4.

^e This is one-third of the trace of the orthogonalized B_{ij} tensor.

^d These positions were calculated assuming sp³-hybridization for the boron atom and a B-H bond length of 1.14 Å; they are therefore listed without an e.s.d. Any distances or angles in this paper involving these atoms will be based on these positions.

3

Selected bond lengths (Å) and angles (°) in crystalline U[H(μ -H)B(N₂C₃H₃)₂]₃(OC₄H₈) (1) ^a

Bond lengths (Å)		
U–N2a ^b	2.576(10)	U-N2e	2.607(9)
U–N2b	2.567(11)	U–N2g	2.601(11)
U–N2d	2.568(9)	U-N2h	2.608(9)
UO	2.625(8)	U···H1bb	3.01 °
		U···H2bb	3.10 °
		U···H3bb	2.88 °
Bond angles (°)			
N2aUN2b	77.4(3)	N2dUN2g	79.0(3)
N2aUN2d	75.4(3)	N2eUN2g	73.8(3)
N2bUN2d	124.3(3)	N2aUN2h	111.6(3)
N2aUN2e	117.5(3)	N2bUN2h	92.2(3)
N2bUN2e	75.1(3)	N2dUN2h	143.1(3)
N2dUN2e	76.0(3)	N2eUN2h	124.3(3)
N2aUN2g	147.8(3)	N2gUN2h	78.6(3)
N2bUN2g	134.1(3)		
N2aUO	75.7(3)	N2eUO	144.3(3)
N2bUO	140.0(3)	N2gUO	79.4(3)
N2dUO	76.1(3)	N2hUO	71.2(3)
N2aUH1bb	58.4 °	N2aUH2bb	59.5 °
N2bUH1bb	58.0 °	N2bUH2bb	67.1 °
N2dUH1bb	132.6 °	N2dUH2bb	57.2 °
N2eUH1bb	133.0 °	N2eUH2bb	58.2 °
N2gUH1bb	137.6 °	N2gUH2bb	119.9 °
N2hUH1bb	59.3 °	N2hUH2bb	158.4 °
OUH1bb	82.6 °	OUH2bb	120.6 °
N2aUH3bb	152.1 °	N2gUH3bb	59.6 °
N2bUH3bb	77.1 °	N2hUH3bb	58.4 °
N2dUH3bb	129.4 °	OUH3bb	118.8 °
N2eUH3bb	65.9 °		
H1bbUH2bb	102.3 °	H1bbUH3bb	98.0 °
H2bbUH3bb	118.9 °		
N1aB1N1b	111.9(9)	N1dB2N1e	108.6(11)
N11 D2N111			

* The numbers in parentheses are the e.s.d.s in the last significant digit.

^b Atoms are labeled in agreement with Figs. 2-4.

 $^{\rm c}$ This parameter was calculated using the idealized coordinates listed in Table 2 for the BH₂ hydrogen atoms. Since these hydrogen atoms were place in fixed positions, this parameter is listed without an e.s.d.

The six U–N bonds in 1 have an average ¹ length of 2.588(10, 18, 21, 6) Å which is only 0.012 Å longer than the 2.576(14, 22, 43, 12) Å average length observed in the solid state for the U–N bonds in the two crystallographically-independent molecules of $U[H(\mu - H)-B(3,5-Me_2pz)_2]_3$ (3) [4]. Compound 3 is the non-solvated analogue of 1 that incorporates the sterically more-demanding $H_2B(3,5-Me_2pz)_2^-$ ligand. The six coordi-

¹ The first number in parentheses following an average value of a bond length or angle is the root-mean-square e.s.d. of an individual datum. The second and third numbers are the average and maximum deviations from the average value, respectively. The fourth number represents the number of individual measurements which are included in the average value.

Table 4

Ligand \cdots ligand contacts (Å) along edges of the coordination polyhedron for $U[H(\mu-H)B(N_2C_3H_3)_2]_3(OC_4H_8)$ (1) "

N2a···N2b	3.22	N2d···N2g	3.29
N2d · · · N2e	3.19	N2e···N2g	3.13
$N2g \cdots N2h$	3.30	-	
$N2a \cdots N2d$	3.14	N2a···N2h	4.29
N2b···N2e	3.15	$N2b \cdot \cdot \cdot N2h$	3.73
O···N2a	3.19	$H2bb \cdots N2a$	2.85
$O \cdots N2d$	3.20	H2bb · · · N2b	3.16
O · · · N2g	3.34	H2bb · · · N2d	2.75
$O \cdots N2h$	3.05	H2bb · · · N2e	2.81
		H3bb · · · N2b	3.40
$H1bb \cdots N2a$	2.75	H3bb · · · N2e	2.99
H1bb···N2b	2.73	H3bb · · · N2g	2.74
$H1bb \cdots N2h$	2.80	$H3bb \cdots N2h$	2.69

* A B-H bond length of 1.14 Å was used for these calculations.

Fig. 4. Perspective drawing of the trigonal prismatic coordination polyhedron observed for U(III) in the solid-state structure of U[H(μ -H)Bpz₂]₃(THF) (1). The U–O and agostic B–H···U bonds which cap faces of the polyhedron are represented by thick dashed lines. A B–H bond length of 1.14 Å was used to produce this drawing.

nated nitrogens in 3 also describe a trigonal prism and each of the $H_2B(3,5-Me_2pz)_2^{-1}$ ligands is involved in three-center two-electron bonding interactions with the metal. The most obvious difference between the U(III) coordination in 3 and 1 is therefore a formal increase by one in coordination number from nine in 3 to ten in 1. A change in coordination number from nine to ten is expected to involve a ~0.05 Å uniform increase in all metal-ligand bond lengths [11]. This does not seem to have occurred in the present case since the U-N bond lengths for 1 and 3 are quite similar. Although this result might loosely be interpreted as indicating that binding a THF ligand to the U(III) ion in U[H(μ -H)Bpz_]₃ (2) is sterically equivalent to replacing the hydrogens by methyls at the 3- and 5-positions in each of its six pyrazolyl rings, this would be a gross oversimplification. The U–O distance is similar to the values observed in [HB(3,5-Me₂pz)₃]UI₂(THF)₂ (2.58(1) and 2.65(1) Å) [12], but as expected, longer than the average bond length of 2.52(1) Å in the seven-coordinate UI₃(THF)₄ complex [5].

As noted above, the solid-state IR bands associated with the B-H \cdots U interactions are shifted less in 1 than in 3 relative to the normal terminal B-H stretch. This indicates weaker (and longer) three-center agostic $U \cdots H-B$ bonding interactions with the metal in 1. The $U \cdots H$ bridge bonds are indeed weaker in 1 than 3 since the U···B separations average 3.42 Å in 1 and 3.20 Å in 3. The steric and/or electronic differences between 1 and 3 therefore seem to affect the agostic $B-H \cdots U$ bonds much more than the U-N bonds (which were quite similar in the two compounds). This should probably not be surprising since these agostic bonds are the weakest ones to the metal. The steric and/or electronic factors which are responsible for lengthening these weak agostic bonds in 1 relative to 3 should also affect, although probably to a less noticeable degree, the other structural features of 1.

The solid-state structure of 3 has approximate C_{3h} molecular symmetry with the bidentate ligands spanning the three vertical edges between triangular faces of the trigonal prism. This arrangement allows the ligands to pack efficiently by wrapping around the girdle of the trigonal prism with the BH₂ of one ligand nestled in between the pyrazolyl rings of the adjacent one. The BH₂ group of the H₂B(3,5-Me₂pz)₂⁻ ligands can easily move toward the metal in this structure.

If a trigonal prismatic arrangement of six nitrogens is preferred for U(III) in these complexes, a different wrapping pattern must exist for the $H_2Bpz_2^-$ ligands in 1 because of the coordinated THF ligand. Being the largest donor atom of a 'capping' ligand, the THF oxygen will cap a 'square' face of the trigonal prism. Maximum utilization of available agostic B-H···U bonding interactions will then require the capping of a triangular face and consequently the spanning of a triangular edge by at least one $H_2Bpz_2^-$ ligand. This will determine which edges are spanned and which faces are capped by the remaining two ligands.

The data in Tables 3 and 4 reveal two trends which may help our analysis. Three of the six U–N bonds (U–N2e, U–N2g and U–N2h) are systematically longer (av. length 2.605(10, 3, 4, 3) Å) than the other three (av. length 2.570(10, 4, 6, 3) Å) and two edges (N2a···N2h and N2b···N2h) of the trigonal prism are much (>0.40 Å) longer than the others. Both of these effects can be attributed to steric crowding on the coordination sphere which manifests itself in ligand···ligand contacts which are short even after these distortions have occurred. These same interactions should weaken the agostic $B-H \cdots U$ bonds, particularly since two of the face-capping hydrogens (H1bb and H3bb) are directly involved in these short contacts. With B-H and C-H bond lengths of 1.14 and 1.09 Å, respectively, hydrogen atom H1bb is 2.96 Å away from C3h and points directly at it (the B1-H1bb \cdots C3h angle is 177°). Hydrogen atom H3bb is 2.31 Å away from hydrogen atom H3e and 2.91 Å away from C3e. Both of these separations are less than or equal to the respective sums of van der Waals [13] radii: 1.2 Å for hydrogen, 1.5 Å for nitrogen and 1.7 Å for carbon. Interligand $H \cdots H$, $N \cdots H$ and $C \cdots H$ contacts equal to or less than the van der Waals values of 2.4, 2.7 and 2.9 Å, respectively, also exist between the THF ligand and adjacent pyrazolyl rings: H2sa···C3h, 2.80 Å; H2sa···N2h, 2.68 Å; H2sb···C3g, 2.90 Å; H5sa···C3a, 2.71 Å. Pyrazolyl hydrogen atom H3b is also involved in two short interligand contacts: H3b····N2e at 2.77 Å and H3b····C3e at 2.83 Å. Shortening the three long U-N bonds and/or the two long $N \cdots N$ polyhedral edges would make all of these short contacts even shorter.

Steric factors thus appear to be playing a significant role in weakening the agostic $U \cdots H$ -B bonding interactions in 1 relative to 3. The U(III) ion in 1 maintains strong bonding interactions with the $H_2Bpz_2^-$ nitrogens and the THF oxygen at the expense of the agostic B-H \cdots U bonds. It is interesting to note that if the total elongation experienced by the agostic $U \cdots H$ bonds (~0.6 Å) on going from 3 to 1 is distributed equally over all ten $U \cdots$ ligand bonds in 1, a more normal lengthening is observed for the U-N bonds.

4. Conclusions

The nature of $U[H(\mu-H)Bpz_2]_3(THF)(1)$ and $U[H(\mu-H)B(3,5-Me_2pz)_2]_3(3)$ complexes underscores the role that steric effects play in the coordination chemistry of the f-elements; use of the sterically less-demanding $H_2Bpz_2^{-}$ ligands allows THF coordination in 1. It is noteworthy that with the smaller Y(III) center both ligands give the same tris-chelate complex, Y[H(μ -H)Bpz'_2]_3. It is also interesting that despite the presence of coordinated THF, complex 1 maintains three agostic B-H···U bonds. Not surprisingly the strength of these interactions is weaker in 1 than in 3. The coordinated THF ligand is not firmly anchored in complex 1 and

the THF-free complex, $U[H(\mu-H)Bpz_2]_3$ (2) is also readily available. This apparent solution lability may allow the synthesis of various $U(H_2Bpz_2)_3(L)$ complexes and a study of the effect of these ligands, steric and electronic, on the strength of the agostic $B-H\cdots U$ bonding.

5. Supplementary material

Tables of anisotropic thermal parameters, atomic coordinates for hydrogen atoms, bond lengths and angles involving non-hydrogen atoms, and structure factors have been deposited at the Cambridge Crystallographic Data Center.

Acknowledgements

We thank the Natural Sciences and Engineering Research Council (Canada), the University of Alberta and Crystalytics Company for financial support of this work.

References

- [1] S. Trofimenko, Chem. Rev., 93 (1993) 943.
- [2] A. Domingos, J.P. Leal, J. Marcalo, N. Marques, B. Kanellakopulos, R. Maier, C. Apostolidis and J.A. Martinho Simoes, *Eur. J. Solid State Inorg. Chem.*, 28 (1991) 413.
- [3] D.L. Reger, J.A. Lindeman and L. Lebioda, *Inorg. Chem.*, 27 (1988) 1890.
- [4] A. Carvalho, A. Domingos, P. Gaspar, N. Marques, A. Pires de Matos and I. Santos, *Polyhedron*, 11 (1992) 1481.
- [5] (a) D.L. Clark, A.P. Sattelberger, S.G. Bott and R.N. Vrtis, *Inorg. Chem.*, 28 (1989) 1771; (b) L.R. Avens, S.G. Bott, D.L. Clark, A.P. Sattelberger, J.G. Watkin and B.D. Zwick, *Inorg. Chem.*, 33 (1994) 2248.
- [6] S. Trofimenko, J. Am. Chem. Soc., 89 (1967) 3170.
- [7] J. Sandstrom, Dynamic NMR Spectroscopy, Academic Press, London, 1982, p. 96.
- [8] (a) V.W. Day, T.A. Eberspacher, W.G. Klemperer, R.P. Planalp, P.W. Schiller, A. Yagasaki and B. Zhong, *Inorg. Chem.*, 32 (1993) 1629; (b) C.J. Besecker, V.W. Day, W.G. Klemperer and M.R. Thompson, J. Am. Chem. Soc., 106 (1984) 4125.
- [9] T.J. Marks and J.R. Kolb, J. Am. Chem. Soc., 97 (1975) 27.
- [10] F.A. Cotton, B.A. Frenz and C.A. Murillo, J. Am. Chem. Soc., 87 (1975) 2118.
- [11] R.D. Shannon, Acta Crystallogr., 432 (1976) 751.
- [12] Y.M. Sun, unpublished observation.
- [13] L. Pauling, *The Nature of the Chemical Bond*, Cornell University Press, Ithaca, NY, 3rd edn., 1960, p. 260.