Koichiro Aoyagi, Kayoko Kasai, Denis Y. Kondakov, Ryuichiro Hara, Noriyuki Suzuki and Tamotsu Takahashi"

Institute for Molecular Science and the Graduate University of Advanced Studies, Myodaiji, Okazaki 444 (Japan)

(Received January 13 1994)

Abstract

Zirconacyclopentenes, which were readily prepared by the reaction of $Cp₂ZrEt₂$ with alkynes or by the reaction of vinylsilane with alkynes in the presence of Cp_2ZrBu_2 (Negishi reagent), reacted with iodine to give either stereodefined alkenyl iodides or homoallylic iodides selectively after hydrolysis. The chemoselectivity of this reaction was strongly dependent on the substituent R group of the C2 carbon attached to zirconium. When R was a phenyl group, homoallylic iodides were selectively formed. On the other hand, alkyl substituted zirconacyclopentenes reacted with iodine to afford alkenyl iodides selectively. A small amount of diiodides were produced as by-products. Reactions of zirconacyclopentenes with an excess of MeOH and iodine in this order gave only alkenyl iodides with excellent selectivities. The formation of diiodides was not detected. This monohalogenation procedure using an excess of MeOH $/I_2$ was not substituent dependent in the system used here. Treatment of alkylsubstituted zirconacyclopentenes with CB_{14} or CCl_3Br yielded only homoallylic bromides, after hydrolysis, with $>99\%$ chemoselectivity. It is in sharp contrast to the reaction with usual bromination reagents such as $Br₂$ and NBS which led to the selective formation of alkenyl bromides. A sequential treatment of zirconacyclopentenes with CBr_4 and I_2 in this order, afforded a mixed dihalogenation product selectively. Reaction with Me₃SnCl was not substituent dependent. The sp³ carbon attached to Zr selectively reacted with Me₃SnCl to give homoallyltin compounds. Insertion reaction of isonitrile in the Zr-carbon bond of zirconacyclopentenes were chemoselective but neither substituent dependent nor reagent dependent in the system used here.

Key words: Chemoselective reaction; Substituent dependent; Substituent independent; Reagent dependent; Zirconium complexes; Zirconacyclopentene complexes

Introduction

Chemoselective functionalization of organometallic compounds is very attractive for organic synthesis. Zirconacyclopentene compounds have been readily prepared by intermolecular cross-coupling of alkynes with alkenes [l, 21 or intramolecular cyclization of enynes [3]. Zirconacyclopentene compounds have two different zirconium-carbon bonds. One is a zirconium-sp³ carbon bond and the other is a zirconium- $sp²$ carbon bond. These two zirconium-carbon bonds can be expected to have different reactivities (Scheme 1). Negishi *et al.* [4], Mori et *al.* [3g] and Buchwald and Nielsen [5] reported several reactions of zirconacyclopentenes in bicyclic or tricyclic systems with various reagents [3g]. The Zr -sp³ carbon bond seemed to be more reactive than the $Zr-sp^2$ carbon bond towards those reagents. Interestingly, Negishi et al. reported that n-BuNC in-

sertion occurred between Zr and the sp³ carbon of a bicyclic zirconacyclopentene compound [4] while Buchwald and Nielsen showed that t-BuNC reacted at the $Zr-sp^2$ carbon of a bicyclo[3.1.0]zirconacyclopentene [5]. However, the factors of the opposite selectivities have not been elucidated yet.

Recently, we reported a convenient preparative method of zirconacyclopentenes using Cp_2ZrEt_2 [1a]

^{*}Author to whom correspondence should be addressed.

and alkynes or a combination of Cp_2ZrBu_2 (Negishi reagent) [3b], an ethylene gas and alkynes [lb]. Surprisingly, we found that chemoselectivity of the iodi- ' nation reaction of zirconacyclopentenes was dependent on their substituents, whereas the method using an excess of MeOH $/I_2$ gave only alkenyl iodides [6]. The use of an excess of MeOH was very important for achieving an excellent selectivity [7]. We also found that $CBr₄$ or $CClBr₃$ could be used as a bromination reagent for alkyl-substituted zirconacyclopentenes. This reagent afforded only homoallyl bromides, which is in sharp contrast to the usual bromination reagent such as Br, and NBS which gave alkenyl bromide selectively [8]. In this paper we describe in detail the chemoselective functionalization of zirconacyclopentenes.

Experimental

All reactions and manipulations were performed under an atmosphere of nitrogen using standard Schlenk techniques. THF was distilled from sodium/benzophenone. GC analyses were performed on a Shimadzu GC-14A equipped with a flame ionization detector using Shimadzu capillary column(CBPl-M25-025). The GC yields were determined using suitable hydrocarbon internal standards. NMR spectra were recorded on a Jeol EX-270 FT NMR spectrometer, GC-MS on a Shimadzu GCMS-QPlOOOEX and high resolution MS on a Shimadzu KRATOS CONCEPT IS.

Preparation of zirconaqclopentenes

Zirconacyclopentenes **la-h** were prepared *in situ* in high yields as described previously [1] by the reaction of 1.2 mmol of Cp_2ZrEt_2 with 1.0 mmol of alkynes or by the reaction of 5.0 mmol of vinylsilane with 1.0 mmol of alkynes in the presence of 1.2 mmol of Cp_2ZrBu_2 (Negishi reagent). Yields obtained here were based on alkynes.

The alkynes, 1-(p-methoxyphenyl)-1-hexyne and l- (p-chlorophenyl)-1-hexyne, were prepared according to the literature [9].

I-(p-Methovphenyl)-I-hexyne. Yield 78%. 'H NMR (CDCl₃, TMS): δ 0.94 (t, $J=7$ Hz, 3H), 1.40–1.63 (m, 4H), 2.38 (t, $J=7$ Hz, 2H), 3.76 (s, 3H), 6.79 (d, $J=9$ Hz, 2H), 7.32 (d, $J=9$ Hz, 2H). ¹³C NMR (CDCl₃, TMS): 6 13.68, 19.12, 22.07, 31.02, 55.20, 80.29, 88.73, 113.82, 116.33, 132.86, 159.01. High resolution mass spectroscopy (HRMS): calc. for $C_{13}H_{16}O$: 188.1201; found: 188.1203.

I-(p-Chlorophenyl)-1-hexyne. Yield 82%. ¹H NMR (CDCl₃, TMS): δ 0.94 (t, J = 7 Hz, 3H), 1.39–1.63 (m, 4H), 2.38 (t, $J=7$ Hz, 2H), 7.20–7.32 (m, 4H). ¹³C NMR (CDCl₃, TMS): δ 13.64, 19.12, 22.07, 30.78, 79.57, 91.50, 122.69, 128.48, 132.77, 133.40. HRMS: talc. for $C_{12}H_{13}Cl$: 192.0706; found: 192.0677.

Reaction of la with I,

To a solution of **la** was added 1.2 mmol (0.30 g) of I_2 at 0 °C and the mixture was stirred for 1 h at 0 °C. The reaction mixture was quenched with 3 N HCl. The aqueous layer was extracted with diethyl ether and the combined organic layers were washed with 25 wt./wt.% $Na₂S₂O₃$ and saturated NaCl, and dried over MgSO₄. After filtration and distillation, (E)-4-ethyl-5-iodo-4 octene (4a) was obtained in 83% yield.

 (E) -4-Ethyl-5-iodo-4-octene (4a). ¹H NMR (CDCl₃, TMS): δ 0.90 (t, J=7 Hz, 3H), 0.91 (t, J=7 Hz, 3H), 0.97 (t, $J=7$ Hz, 3H), 1.41 (tq, $J=7$ Hz, 2H), 1.54 (tq, $J=7$ Hz, 2H), 2.13-2.25 (m, 4H), 2.47 (t, $J=7$ Hz, 2H). ¹³C NMR (CDCl₃, TMS): δ 12.15, 12.87, 14.09, 22.07, 23.04, 33.30, 35.76, 42.87, 104.35, 145.33. HRMS: talc. for $C_{10}H_{19}I: 266.0532$; found: 266.0531.

(Z)-1,2-Diphenyl-4-iodo-1-butene (5b). 'H NMR (CDCI,, TMS): 6 3.03-3.17 (m, 4H), 6.49 (s, lH), 6.92–7.34 (m, 10H). ¹³C NMR (CDCl₃, TMS): δ 4.73, 44.44, 126.63, 127.39, 127.89, 128.64, 128.75, 128.89, 129.00, 136.66, 139.32, 140.66. HRMS: calc. for $C_{16}H_{15}I$: 334.0219; found: 334.0218.

3-Ethyl-4-iodo-3-hexene (4c). ¹H NMR (CDCl₃, TMS): δ 0.97 (t, J = 7 Hz, 3H), 0.99 (t, J = 7 Hz, 3H), 1.05 (t, $J=7$ Hz, 3H), 2.15-2.27 (m, 4H), 2.53 (q, $J=7$ Hz, 2H). 13C NMR (CDCl,, TMS): 6 12.04, 13.62, 14.75, 24.03, 34.88, 35.36, 105.46, 145.98. HRMS: talc. for C_8H_{15} I: 238.0219; found: 238.0213.

(E)-4-Iodo-2-methyl-I-phenyl-1-butene (Sd). 'H NMR (CDCl₃, TMS): δ 1.85 (d, J = 1 Hz, 3H), 2.68–2.74 (m, 2H), 3.31 (t, J=7 Hz, 2H), 6.32 (s, lH), 7.17-7.35 (m, 5H). ¹³C NMR (CDCl₃, TMS): δ 4.37, 17.06, 44.49, 126.27, 127.40, 128.05, 128.75, 136.86, 137.74. HRMS: calc. for $C_{11}H_{13}$: 272.0062; found: 272.0064.

(E)-CIodo-2-butyl-(I-p-methoxyphenyl)-I-butene (Se). Yield 71%. ¹H NMR (CDCl₃, TMS): δ 0.89 (t, J=7 Hz, 3H), 1.24-1.49 (m, 4H), 2.22-2.24 (m, 2H), 2.67-2.73 (m, 2H), 3.30 (t, J=8 Hz, 2H), 3.80 (s, 3H), 6.25 (s, 1H), 6.85 (d, J = 9 Hz, 2H), 7.14 (d, J = 9 Hz, 2H). ¹³C NMR (CDCl₃, TMS): δ 4.64, 13.91, 22.82, 29.90, 30.44, 41.62, 55.22, 113.58, 126.90, 129.68, 130.33, 140.52, 158.07. HRMS: calc. for $C_{15}H_{21}O1$: 344.0637; found: 344.0627.

(E)-4-Iodo-2-butyl-(I-p-chlorophenyl)-1-butene (Sf). Yield 85%. ¹H NMR (CDCl₃, TMS): δ 0.87 (t, J=7 Hz, 3H), 1.18-1.48 (m, 4H), 2.15-2.21 (m,2H), 2.68-2.74 $(m, 2H), 3.31$ (t, $J=8$ Hz, 2H), 6.25 (s, 1H), 7.11-7.30 $(m, 4H)$. ¹³C NMR (CDCl₃, TMS): δ 4.15, 13.87, 22.75, 29.83,30.33,41.24,126.25,128.30,129.88,132.06,136.24, 142.55. HRMS: calc. for $C_{14}H_{18}ClI: 348.0142$; found: 348.0169.

 (Z) -5-Iodo-4-[2-(trimethylsilyl)ethyl]-4-octene (4g). ¹H NMR (CDCl₃, TMS): δ 0.03 (s, 9H), 0.59–0.65 (m, 2H), 0.88–0.94 (m, 6H), 1.41 (tq, $J=7$ Hz, 2H), 1.54 $(tq, J=7 Hz, 2H)$, 2.14–2.20 (m, 4H), 2.44 (t, $J=7 Hz$, 2H). ¹³C NMR (CDCl₃, TMS): δ -1.78, 12.87, 14.11, 14.93, 22.10, 23.04, 33.24, 37.00, 42.89, 103.59, 146.29. HRMS: calc. for C₁₃H₂₇ISi: 338.0927; found: 338.0918.

 (E) -1, 2-Diphenyl-1-iodo-4-trimethylsilyl-1-butene (4h). ¹H NMR (CDCl₃, TMS): δ 0.03 (s, 9H), 0.65–0.72 (m. 2H), 2.74–2.81 (m, 2H), 6.23–7.08 (m, 10H). ¹³C NMR (CDCl₃, TMS): δ -1.80, 14.43, 39.93, 98.15, 126.47, 126.79, 127.40, 127.69, 129.04, 129.86, 139.64, 144.45, 151.05. HRMS: calc. for $C_{19}H_{23}ISi: 406.0614$; found: 406.0630.

Reaction of 1b with an excess of MeOH and iodine

Methanol (1.5 mmol) was added to a solution of 1b (1 mmol) in THF (5 ml) at 0 °C. After stirring for 1 h, iodine $(1.2 \text{ mmol}, 0.30 \text{ g})$ was added to the reaction mixture and stirred for 3 h. The reaction mixture was quenched with 3 N HCl. The aqueous layer was extracted with diethyl ether and the combined organic layers were washed with 25 wt./wt.% $Na₂S₂O₃$ and saturated NaCl, and dried over MgSO₄. After filtration and distillation, (E) -1,2-diphenyl-1-iodo-1-butene 4b was obtained in 78% yield.

 (E) -1, 2-Diphenyl-1-iodo-1-butene (4b). ¹H NMR (CDCl₃, TMS): δ 1.03 (t, J = 7 Hz, 3H), 2.82 (g, J = 7 Hz, 2H), 6.89–7.16 (m, 10H). ¹³C NMR (CDCl₃, TMS): 8 11.77, 38.60, 98.90, 126.59, 126.93, 127.51, 127.78, 129.07, 129.90, 139.62, 144.53, 150.26. HRMS: calc. for $C_{16}H_{15}I$: 334.0219; found: 334.0231.

 (Z) -1-Iodo-2-methyl-1-phenyl-1-butene (4d). ¹H NMR (CDCl₃, TMS): δ 1.10 (t, J = 7 Hz, 3H), 1.72 (s, 3H), 2.43 (q, $J=7$ Hz, 2H), 7.17–7.33 (m, 5H). ¹³C NMR (CDCl₃, TMS): δ 11.72, 18.47, 37.43, 93.78, 127.28, 128.08, 128.89, 144.51, 144.85. HRMS: calc. for $C_{11}H_{13}I$: 272.0062; found: 272.0071.

 (Z) -1-Iodo-2-ethyl- $(1-p$ -methoxyphenyl)-1-hexene $(4e)$. Yield 80%. ¹H NMR (CDCl₃, TMS): δ 0.80 (t, J=7 Hz, 3H), $0.89-1.32$ (m, 4H), 1.09 (t, $J=7$ Hz, 3H), 2.02–2.08 (m, 2H), 2.41 (q, $J=7$ Hz, 2H), 3.78 (s, 3H), 6.81 (d, $J=9$ Hz, 2H), 7.13 (d, $J=9$ Hz, 2H). ¹³C NMR $(CDCl₃, TMS): \delta 12.09, 13.80, 22.43, 30.84, 31.55, 34.34,$ 55.20, 95.65, 113.39, 129.85, 137.61, 148.80, 158.52. HRMS: calc. for C₁₅H₂₁OI: 344.0637; found: 344.0623.

 (Z) -1-Iodo-2-ethyl- $(1-p$ -chlorophenyl)-1-hexene $(4f).$ Yield 82%. ¹H NMR (CDCl₃, TMS): δ 0.76 (t, J=7) Hz, 3H), 1.09 (t, $J=7$ Hz, 3H), 1.14-1.39 (m, 4H), 2.00–2.05 (m, 2H), 2.41 (q, $J=7$ Hz, 2H), 7.06–7.30 (m, 4H). ¹³C NMR (CDCl₃, TMS): δ 12.01, 13.75, 22.37, 30.73, 31.59, 34.18, 93.39, 128.27, 129.97, 132.97, 143.34, 149.72. HRMS: calc. for C₁₄H₁₈ClI: 348.0142; found: 348.0116.

Reaction of 1a with $Br₂$

This reaction was carried out in a similar way to the reaction described above using $Br₂$ (1.2 mmol, 0.062) ml) instead of I_2 . (E)-4-Bromo-5-ethyl-4-octene was obtained in 79% yield. Isomerical purity was 94%.

 (E) -4-Bromo-5-ethyl-4-octene (14a). ¹H NMR (CDCl₃, TMS): δ 0.90 (t, J=7 Hz, 3H), 0.91 (t, J=7 Hz, 3H), 1.00 (t, $J=7$ Hz, 3H), 1.42 (tq, $J=7$ Hz, 2H), 1.58 (tq, $J=7$ Hz, 2H), 2.06-2.12 (m, 4H), 2.22 (g, $J=7$ Hz, 2H), 2.44 (t, $J=7$ Hz, 2H). ¹³C NMR (CDCl₃, TMS): 8 12.06, 13.10, 14.11, 21.87, 21.96, 29.88, 34.18, 39.14, 123.16, 139.82. HRMS: calc. for C₁₀H₁₉Br: 218.0670; found: 218.0654.

 (E) -3-Bromo-4-ethyl-3-hexene (14c). ¹H NMR (CDCl₃, TMS): δ 1.00 (t, J = 7 Hz, 3H), 1.00 (t, J = 7 Hz, 3H), 1.10 (t, J = 7 Hz, 3H), 2.13 (q, J = 7 Hz, 2H), 2.22 (q, $J=7$ Hz, 2H), 2.49 (q, $J=7$ Hz, 2H). ¹³C NMR (CDCl₃, TMS): δ 12.02, 13.46, 13.84, 25.12, 29.60, 30.94, 124.45, 140.39. HRMS: calc. for C₈H₁₅Br: 190.0357; found: 190.0374.

Reaction of 1a with NBS

NBS $(1.2 \text{ mmol}, 0.21 \text{ g})$ was used as a bromination reagent instead of Br₂ in the above reaction. Bromination reaction of 1a with NBS gave 98% of 14a in 98% yield with 96% of isomerical purity.

Reaction of 1a with CuBr₂

CuBr₂ (1.2 mmol, 0.29 g) was used as a bromination reagent. GC analysis of the reaction mixture showed that 14a was formed in 30% vield.

Reaction of 1a with carbon tetrabromide

To a solution of 1a was added carbon tetrabromide $(1.2 \text{ mmol}, 0.40 \text{ g})$ at 0 °C and the mixture was stirred for 1 h at room temperature. After quenching with 3 N HCl, aqueous layers were extracted with diethyl ether. The combined organic layers were washed with saturated NaHCO₃, and dried over $MgSO₄$. The ether extract was evaporated. The product was purified by column chromatography. (Z)-3-Propyl-1-bromo-3-heptene was obtained in 94% yield with $>99\%$ isomerical purity.

1-Bromo-3-propyl-3-heptene $(13a)$. ¹H NMR (CDCl₃, Me₄Si): δ 0.83 (t, J = 7.2 Hz, 6H), 1.24–1.36 (m, 4H), 1.86–1.96 (m, 4H), 2.45 (t, $J=7.9$ Hz, 2H), 3.34 (t, $J=7.6$ Hz, 2H), 5.15 (t, $J=7.9$ Hz, 1H). ¹³C NMR (CDCl₃, Me₄Si): δ 13.79, 14.02, 21.58, 22.97, 29.81, 31.83, 31.99, 40.40, 128.34, 136.26. HRMS: calc. for $C_{10}H_{19}Br: 218.0670$; found: 218.0651.

 (Z) -3-Ethyl-1-bromo-3-hexene (13c). ¹H NMR (CDCl₃, TMS): δ 0.95 (t, J = 7 Hz, 3H), 0.97 (t, J = 7 Hz, 3H), 1.96–2.07 (m, 4H), 2.53 (t, $J=8$ Hz, 2H), 3.41 (t, $J=8$ Hz, 2H), 5.18 (t, $J=7$ Hz, 1H). ¹³C NMR (CDCl₃, TMS): δ 13.30, 14.48, 20.92, 22.82, 31.90, 40.13, 129.32,

Dihalogenation of lc with CCl,Br and I,

To a solution of **lc** (1 mmol) in THF (3.5 ml) was added CCl,Br (0.22 g, 1.1 mmol) and the reaction mixture was stirred at room temperature for 3 h. Then iodine (0.51 g, 2 mmol) was added and after stirring at room temperature for 3 h the usual work-up gave **15** in 89% yield (> 98% isomerically pure).

I-Bromo-3-ethyl-4-iodo-3-hexene (15). 'H NMR (CDCl₃, Me₄Si): δ 0.9–1.2 (m, 6H), 2.23 (q, J = 7.6 Hz, 2H), 2.57 (q, J=7.3 Hz, 2H), 2.7-2.9 (m, 2H), 3.3-3.5 (m, 2H). ¹³C NMR (CDCl₃, Me₄Si): δ 13.48, 14.66, 25.03, 29.36, 35.11, 45.41, 106.43, 142.01. HRMS: talc. for $C_8H_{14}BrI: 315.9324$; found: 315.9344.

Dihalogenation of Zc with NBS and I,

To a solution of **lc (1** mmol) in THF (5 ml) was added NBS (196 mg, 1.1 mmol) and the reaction mixture was stirred at 0 °C for 1 h. Then iodine (0.51 g, 2) mmol) was added and after stirring at room temperature for 3 h the usual work-up gave 1-iodo-3-ethyl-4-bromo-3-hexene (16) in 74% yield along with l-bromo-3-ethyl-4-iodo-3-hexene (15) (7%) and 1,4-diiodo-3-ethyl-3 hexene (17) (15%).

I-Iodo-3-ethyl-4-bromo-3-hexene (16). 'H NMR (CDCl₃, Me₄Si): δ 1.01 (t, J=7.6 Hz, 3H), 1.11 (t, $J=7.3$ Hz, 3H), 2.16 (q, $J=7.6$ Hz, 2H), 2.48 (q, $J=7.3$ Hz, 2H), 2.7-2.9 (m, 2H), 3.1-3.3 (m, 2H). 13C NMR $(CDCI₃, Me₄Si): \delta$ 1.29, 13.37, 13.64, 25.59, 31.00, 41.08, 127.74, 138.17. HRMS: calc. for C₈H₁₄BrI: 315.9324; found: 315.9330.

I, *4-Diiodo-3-ethyl-3-hexene (27).* 'H NMR (CDCl,, Me₄Si): δ 1.01 (t, J = 7.6 Hz, 3H), 1.06 (t, J = 7.3 Hz, 3H), 2.22 (q, J=7.6 Hz, 2H), 2.53 (q, J=7.3 Hz, 2H), 2.7-2.9 (m, 2H), 3.1-3.2 (m, 2H). "C NMR (CDCI,, Me,Si): 6 1.24, 13.53, 14.59, 24.73, 35.06, 46.52, 108.98, 143.90. HRMS: calc. for $C_8H_{14}I_2$: 363.9186; found: 363.9192.

Dihalogenation of lc with I, and NBS

To a solution of **lc** (1 mmol) in THF (5 ml) was added iodine (0.28 g, 1.1 mmol) and the mixture was stirred at $0 °C$ for 1 h. Then NBS (0.27 g, 1.5 mmol) was added and after stirring at room temperature for 3 h the usual work-up gave 15 in 25% yield and 17 in 60% yield.

Reaction of dimethylzirconocene with CCl,Br

To a freshly prepared solution of dimethylzirconocene in C_6D_6 (c. 0.7 M, 0.35 mmol), CCl_3Br (77 mg, 0.38) mmol) was added at room temperature and the mixture was monitored by NMR. Within 10 min dimethylzirconocene was completely consumed and $Cp₂Zr(CH₃)CCl₃$ was formed in 89% yield along with the formation of MeBr in 83% yield.

 $Cp_2Zr(CH_3)CCl_3$. ¹H NMR (C₆D₆, Me₄Si): δ 0.24 (s, 3H), 5.93 (s, 10H). ¹³C NMR (C₆D₆, Me₄Si): δ 35.09, 78.32, 112.73.

Reaction of la with Me,SnCl

To a solution of $1a$ (1 mmol) in THF (5 ml) was added 1.0 mmol of Me₃SnCl (0.20 g) at 0 $^{\circ}$ C and the mixture was stirred for 1 h. (Z)-3-Propyl-l-trimethylstannyl-3-heptene (18a) was formed in 91% yield. ¹H NMR (CDCl₃, TMS): δ 0.03 (s, 9H), 0.84-0.96 (m, 2H), 0.89 (t, J=7 Hz, 3H), 0.90 (t, J=7 Hz, 3H), 1.28-1.41 (m, 4H), 1.93-2.03 (m, 4H), 2.15-2.22 (m, 2H), 5.13 (t, $J=7$ Hz, 1H). ¹³C NMR (CDCl₃, TMS): δ -10.10, 9.51, 14.02, 14.29, 21.65, 23.31, 29.92, 31.93, 33.37, 123.84, 141.90. HRMS: calc. for $C_{13}H_{28}Sn$: 304.1213; found: 304.1189.

(E)-1,2-Diphenyl-4-trimethylstannyl-I-butene. Yield 91%. ¹H NMR (CDCl₃, TMS): δ 0.03 (s, 9H), 0.92 (t, $J=8$ Hz, 2H), 2.62 (t, $J=8$ Hz, 2H), 6.38 (s, 1H), 6.68–7.48 (m, 10H). ¹³C NMR (CDCl₃, TMS): δ – 10.14, 9.18,37.34,125.01, 126.02, 126.81,127.80,128.44,128.64, 128.96, 137.55, 141.40, 145.91. HRMS: talc. for $C_{10}H_{24}Sn: 372.0900;$ found: 372.0874.

Reaction of lb or lc with isonitriles

To a THF solution of **lb** of lc prepared *in situ* using 1.2 mmol of $Cp₂ZrEt₂$ and 1.0 mmol of alkynes was added t-BuNC $(1 \text{ mmol}, 0.083 \text{ g})$ or n-BuNC $(1 \text{ mmol},$ 0.083 g) at 0 °C. The mixture was stirred for 2 h at 0 "C. The reaction mixture was evaporated and dissolved in C_6D_6 . The solution was monitored by NMR spectroscopy.

2Ob. Yield 96% based on diphenylacetylene. 'H NMR (C_6D_6, TMS) : δ 1.06 (s, 9H), 2.55–2.77 (m, 4H), 5.45 (s, 10H), 6.91–7.21 (m, 10H). ¹³C NMR (C_6D_6 , TMS): 628.84,29.22,37.68,58.92,106.54,121.13,124.13,127.22, 127.47, 128.62, 143.00, 151.28, 158.88, 177.36, 231.23.

20c. Yield 95% based on 3-hexyne. ¹H NMR (C_6D_6 , TMS): δ 1.01 (s, 9H), 1.27 (t, J = 7.4 Hz, 3H), 1.33 (t, $J=7.4$ Hz, 3H), 2.24-2.27 (m, 2H), 2.40-2.53 (m, 6H), 5.53 (s, 10H). ¹³C NMR (C_6D_6 , TMS): δ 14.41, 16.46, 29.47, 30.33, 30.40, 33.10, 35.44, 58.33, 105.44, 142.50, 170.89, 232.49.

21b. Yield 94% based on diphenylacetylene. 'H NMR $(C_6D_6, \text{ TMS})$: δ 0.87 (t, J = 7.1 Hz, 3H), 1.10-1.22 (m, 2H), 1.33-1.41 (m, 2H), 2.32-2.36 (m, 2H), 2.72-2.76 $(m, 2H)$, 3.08 $(t, J=7.3 \text{ Hz}, 2H)$, 5.46 $(s, 10H)$, 6.91-7.24 (m, 10H). ¹³C NMR (C₆D₆, TMS): δ 13.93, 20.84, 26.99, 31.39,37.63,51.55,106.70,121.29,124.27,127.35,127.53, 129.90, 143.12, 151.21, 158.58, 177.91, 232.02.

21c. Yield 88% based on 3-hexyne. ¹H NMR (C_6D_6 , TMS): δ 0.85 (t, J=7.3 Hz, 3H), 1.08-1.19 (m, 2H), 1.23-1.34 (m, 6H), 1.36-1.42 (m, 2H), 2.18-2.23 (m,

2H), 2.29-2.32 (m, 2H), 2.36-2.48 (m, 2H), 3.07 (t, $J=7.3$ Hz, 2H), 5.54 (s, 10H). ¹³C NMR (C₆D₆, TMS): 6 13.93, 14.41, 16.37, 20.81, 28.12, 30.26, 31.55, 32.78, 35.40, 50.53, 105.53, 142.30, 171.30, 232.99.

Results and discussion

Substituent-dependent chemoselective monohalogenation $reaction$ *of zirconacyclopentenes*

Treatment of $1,1$ -bis(η^5 -cyclopentadienyl)-2,3-dipropyl-2-zirconacyclopentene **(la)** prepared *in situ* with iodine gave, after hydrolysis, (E)-4-ethyl-5-iodo-4-octene **(4a)** in 77% yield along with the formation of **5a (6%)** (eqn. (1)). Diiodination product was obtained in 4% yield. The Zr -sp² carbon bond reacted selectively with iodine. This chemoselectivity of iodination was observed for lc or **lg** which have an alkyl substituent on the C2 carbon.

However, reaction of **lb,** which has a phenyl substituent on the C2 carbon, afforded **5b** in 97% yield (isolated yield 78%) with a high selectivity after hydrolysis (eqn. (2)). The Zr-sp³ carbon bond reacted chemoselectively with iodine. Other aryl substituted zirconacyclopentenes such as **Id-f** except **lh** showed a similar chemoselectivity. The reaction of **lh** with iodine was not clean. Para-substituted phenyl groups such as p -MeOC₆H₄- and p -ClC₆H₄- were used in **1e** and **lf,** respectively, no significant change in chemoselectivities was observed.

The result obtained here (see Table 1) revealed that the chemoselectivity of iodination of **1** was highly dependent on the substituents and, interestingly, the iodination was selective.

Substituent-independent chemoselective monohalogenation of zirconacyclopentenes

In order to develop a useful and a general procedure for organic synthesis, substituent-independent chemoselective reaction is much more attractive. Recently we reported that the treatment of diorganozirconocene TABLE 1. Substituent-dependent monoiodination of zirconacyclopentenes with iodine"

'Zirconacyclopentenes were prepared in *sihc.* The reaction was carried out at 0° C using 1.2 equiv. of I₂. Reaction time: 1 h. Solvent: THF. b Combined GC yields of 4 and 5 based on alkynes.

Ph Ph Me₃Si (1**h**) > 99 < 1 18

such as zirconacyclopentene with an excess of methanol led to a selective monoprotonation reaction [7]. The zirconium containing reaction product with methanol, organozirconocene alkoxide, was relatively inert toward methanol. This inertness allowed the complete monoprotonation of diorganozirconocene compounds. Therefore highly selective monohalogenation products could be obtained after halogenation with I_2 , NBS or Br₂.

$$
Cp_2Zr
$$

\n
$$
P_r
$$

\n
$$
P_r
$$

\n
$$
P_r
$$

\n
$$
P_{\text{Mee H}} \rightarrow Cp_2Zr
$$

\n
$$
Cp_2Zr
$$

\n
$$
P_r
$$

\n

We employed the method of an excess of MeOH/ I, for monoiodination of **la-h** (eqn. (3)). Results are shown in Table 2. Surprisingly, this method was substituent independent and in all cases only stereodefined alkenyl iodides **4a-h** were obtained in high yields with an excellent chemoselectivity. Formation of diiodides was not detected. Stereochemistry of carbon-carbon double bonds was retained (> 99% *syn)* during monoiodination. Monoprotonation proceeded at the $sp³$ carbon on Zr chemoselectively. Treatment of **la** with an excess of MeOH/DCl and an excess of MeOD/HCl gave (Z) -4-deutero-5-ethyloct-4-ene (7) and (Z) -4- (Z) deuteroethyl)-act-4-ene (8). The highly chemoselective protonation is probably due to the stronger basicity of the sp³ carbon attached to Zr rather than the sp^2 carbon. Monoiodination of **lh** with iodine gave, after hydrolysis, a low yield of **4h** (18%), whereas this method afforded **4h** in 95% yield. In the case of 9 and **10** which are prepared as a mixture of isomers from l-

TABLE 2. Substituent-independent iodination of 1 with an excess of MeOH/I₃ª

Zirconacyclopentene	Product	Yield ^b	
	4	5	(%)
1a	> 99	\leq 1	96
1 _b	> 99	\leq 1	99
1 _c	> 99	\leq 1	97
1 _d	> 99	\leq 1	99
1e	> 99	\leq 1	80
1 _f	> 99	\leq 1	82
1g	> 99	\leq 1	95
1h	> 99	\leq 1	95

"Zirconacyclopentenes were prepared *in situ.* Solvent: THF. Temperature: 0 "C. Time: 3 h. The reaction was carried out using 1.5 equiv. of MeOH and then 1.2 equiv. of I_2 . b Combined yields of 4 and 5 based on alkynes.

octyne, similarly, monoiodination products **11** and 12 were obtained, respectively.

Reagent-dependent chemoselective monobromination of zirconacyclopentenes

Chemoselective monohalogenation reaction of 1 described above could provide alkenyl halides in all cases and homoallylic halides for aryl-substituted zirconacyclopentenes. However, there was no procedure to produce homoallylic halides from alkyl-substituted zirconacyclopentenes such as la and lc. During the course of our study to develop a new reagent for halogenation of 1, we found a new reagent CBr_4 or CCl_3Br which afforded homoallylic halides.

Reaction of 1a with $CBr₄$ gave, after hydrolysis, 3propyl-3-heptenyl-l-bromide (13a) in 94% yield (eqn. (4)). Formation of alkenyl bromide was not detected. This is in sharp contrast to the bromination of la with the usual bromination reagents such as NBS and Br_2 which afforded 14a selectively (eqn. (5)). It is noteworthy that monobromination of 1a of 1c with CCl_3Br or CBr_4 had an opposite chemoselectivity to the usual bromination reagents. In addition, treatment of la and **lc** with NBS or $Br₂$ usually produced 4-10% of isomers 13a and 13c, respectively. However, bromination with $CBr₄$ or $CCl₃Br$ showed an excellent chemoselectivity. Results are given in Table 3.

When Cp_2ZrMe_2 was treated with 1.1 equiv. of CCl₃Br, MeBr was obtained in 83% yield in benzene at 10 "C. NMR spectra of zirconium species were consistent with $Cp_2Zr(Me)(CCl_3)$ (89%). In its ¹H NMR spectrum there were two singlets at 5.93 and 0.24 ppm which were assignable to Cp protons and a methyl group, respectively. 13C NMR spectrum showed three carbons at 112.73, 78.32 and 35.09 ppm assignable to Cp-Zr, $Cl₃C-Zr$ and Me-Zr, respectively.

Mixed dihalogenation of zirconacyclopentenes has been practically difficult, since selectivity of halogenation was not high. However, chemoselectivity of bromination with $CBr₄$ or $CCl₃Br$ was satisfactory for mixed dihalogenation of 1. Conventional bromination-iodination of 1c with NBS (1.1 equiv.) and I_2 (2 equiv.) gave the desired product 1-iodo-3-ethyl-4-bromo-3-hexene (16) in 74% yield along with the formation of by-products 15 and **17** in 7% and 15% yields, respectively._ The opposite treatment sequence of I_2 and NBS in this order for lc predominantly led to diiodide 17 in 60% yield. The desired compound 15 was obtained only in 25% yield. This is probably because of a halide exchange reaction of the zirconium-containing intermediate 2c with NBS. Reaction of the Zr-I moiety with NBS might produce an iodination reagent such as NIS in the reaction mixture.

TABLE 3. Reagent-dependent chemoselective bromination of zirconacyclopentenes with various reagents^a

"Zirconacyclopentenes were prepared *in situ.* Solvent: THF. ^b1.2 equiv. Combined yields of 13 and 14 based on alkynes. **TABLE 4.** ¹³C NMR spectra data of 20a,c and 21a,c produced by the reaction of zirconacyclopentenes with t-BuNC or n-BuNC^a

$21.11 - 11.12$											
Product	R ¹	R^2	Ca	Cb	$_{\rm Cc}$	$_{\rm Cd}$	Ce	Cf	Yield ^b $(\%)$		
20 _b	t-Bu	Ph	106.54	177.36	143.00	28.84	37.68	231.23	96		
20c	t-Bu	C_2H_5	105.44	170.89	142.50	30.33	35.44	232.49	95		
21 _b	n-Bu	Ph	106.70	177.91	143.12	26.99	37.63	232.02	94		
21 _c	n-Bu	C_2H_5	105.53	171.30	142.30	28.12	35.40	232.99	88		

[&]quot;Zirconacyclopentenes were prepared in *situ* using 1.2 mm01 of Cp,ZrEt, and 1.0 mmol of alkynes. The reaction was carried out $\sum_{i=1}^{n}$ and $\sum_{i=1}^{n}$ muon of $\sum_{i=1}^{n}$ mmol or $\sum_{i=1}^{n}$ and $\sum_{i=1}^{n}$ mmol or akynes. The recent of akynes.

On the other hand treatment of lc with CCl,Br and I_2 in this order gave 15 in 89% yield with > 98% of isomerical purity. Formation of isomer 16 or diiodide 17 was not detected.

The monohalogenation procedures of 1 are summarized in Scheme 2. Both stereodefined alkenyl halides and homoallylic halides could be selectively obtained from 1.

Chernoselective reaction of zirconacyclopentenes with trimethyltin chloride

A Zr-sp³ carbon bond of zirconacyclopentane is known to react with $Sn-X$ of Ph_2SnCl_2 [10]. On the other hand, one $Zr-sp^2$ carbon bond also reacted with the Sn–X bond of $Me₂SnBr₂$ [11]. It is interesting to compare the reactivities of Zr -sp³ and Zr -sp² carbon bonds in zirconacyclopentenes towards the Sn-X moiety.

Reaction of 1a with 1 equiv. of Me₃SnCl at room temperature in THF gave the homoallyltin compound (Isa) in 91% yield selectively, after hydrolysis (eqn. (6)). The alkenyltin compound (19) was not formed. Phenyl substituted zirconacyclopentene **lb** also reacted with 1 equiv. of $Me₃SnCl$ to afford only 18b. These results indicated that the reaction of 1 with Me₃SnCl

was not substituent dependent like the reaction with iodine but highly chemoselective. Other metal halides such as Ph_3GeCl , Me₃GeCl, Me₃SiCl and Me₃SiI did not give positive results.

Reaction of zirconacyclopentenes with isonitriles

We investigated the reaction of t-BuNC and n-BuNC with $\bf{1b}$ and $\bf{1c}$, (eqn. (7)), since two different chemoselectivities have been reported for the reaction of isonitriles with different types of zirconacyclopentenes [4, 5]. The reaction was carried out at 0° C and completed within 2 h. $\rm{^1H}$ and $\rm{^{13}C}$ NMR spectra of those products showed a clean formation of isonitrile insertion products 20 or 21. Their 13 C NMR data are summarized in Table 4. A resonance at 231-232 ppm was characteristic for the η^2 -iminoacyl group [12, 13]. The result obtained here indicated the insertion reaction of isonitrile was highly chemoselective but neither substituent dependent nor reagent dependent in our system.

References

- (a) T. Takahashi, M. Kageyama, V. Denisov, R. Hara and E. Negishi, Tetrahedron Lett., 34 (1993) 687-690; (b) T. Takahashi, Z. Xi, C.J. Rousset and N. Suzuki, *Chem. Lett., (1993)* 1001-1004.
- (a) C. McDade and J.E. Bercaw, .I. *Organomet. Chem., 279 (1985) 281-315;* (b) S.L. Buchwald and J.C. Dewan, J. *Am. Chem. Sot., 108* (1986) *7441-7442; (c)* S.L. Buchwald, B.T. Watson and J.C. Huffman, 1. *Am. Chem. Sot., 109* (1987) 2544-2546; (d) H.G. Alt and C.E. Denner, *J. Organomet. Chem., 368 (1989) C15-Cl7; (e)* R.A. Fisher and S.L. Buchwald, *Organometallics, 9 (1990) 871-873.*
- 3 (a) E. Negishi, S.J. Holms, J.M. Tour and J.A. Miller, *J. Am. Chem. Sot., 107 (1985) 2568-2569;* (b) E. Negishi, F.E. Cederbaum and T. Takahashi, *Tetrahedron Lett., 27* (1986) *2829-2832; (c)* E. Negishi, D.R. Swanson, F.E. Cederbaum and T. Takahashi, *Tetrahedron Lett., 28* (1987) 917-920; (d) E. Negishi, S.J. Holms, J.M.Tour, J.A. Miller, F.E. Cederbaum, D.R. Swanson and T. Takahashi, J. *Am. Chem. Sot., 111* (1989) *3336-3346; (e)* E.C. Lund and T. Livinghouse, J. Org.

Chem., 54 (1989) *4487-4488; (f)* P.A. Wender and F.E. McDonald, *Tetrahedron Lett., 31 (1990)* 3691-3694; (g) M. Mori, N. Uesaka and M. Shibasaki, .I. Org. *Chem., 57* (1992) 3519-3521.

- *4* E. Negishi, D.R. Swanson and S.R. Miller, *Tetrahedron Lett., 29* (1988) 1631-1634.
- *5* S.L. Buchwald and R.B. Nielsen, *Chem. Rev., 88* (1988) 1047-1058.
- 6 T. Takahashi, K. Aoyagi, R. Hara and N. Suzuki, *J. Chem*. *Sot., Chem. Commun., (1993) 1042-1043.*
- *7* T. Takahashi, K. Aoyagi, R. Hara and N. Suzuki, *Chem. Lett.,* (1992) 1693-1696.
- *8* T. Takahashi, K. Aoyagi and D.Y. Kondakov, J. *Chem. Sot., Chem. Commun.,* (1994) *747-748.*
- *9* A.O. King and E. Negishi, J. Org. *Chem., 43* (1978) *358-360.*
- *10* W.A. Nugent and D.F. Taber,J. *Am. Chem. Sot., 111 (1989) 6435-6437.*
- 11 P.J. Fagan and W.A. Nugent, *J. Am. Chem. Soc., 110* (1988) *2310-2312.*
- 12 J.E. Hill, G. Balaich, P.E. Fanwick and I.P. Rothwell, *Organometallics, 12* (1993) 2911-2924.
- 13 J.M. Davis and R.J. Whitby, *Tetrahedron Lett., 33* (1992) *5655-5658.*