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Abstract 

The question of determining the geometry of AL,, 
systems is approached by examining the interactions 
within a molecule. The consequences of assuming 
that L-L interactions dominate the orientation of La 
around A in AL,, are explored. Successful application 
to a wide range of Ab, ALs, AL4, ALs, ALe, lithium 
oxides and xenon compounds, including excited 
states, radicals and charged systems is presented. 

I. Introduction 

A range of shapes of different symmetries as well 
as different bond angles and bond lengths can be 
adopted by a molecule with the formula AL,, n > 1. 
Various rationalizations exist to account for the 
structures which are observed in covalently bonded 
main group systems. However, for molecules where A 
is a transition metal, or where the A-L bond is 
significantly ionic the situation is less satisfactory. 
Valence Shell Electron Pair Repulsion (VSEPR) 
Theory [l] , or non-bonding radii [2], or a variety 
of qualitative molecular orbital (MO) arguments 
[3] may or may not provide an explanation. Of 
course, a quantitative MO or valence bond calcula- 
tion will, in principle, determine the stable geometries 
of a particular system. Such a calculation is, however, 
seldom feasible for a transition metal complex or 
for molecules involving larger main group elements. 
Ideally one would like a simple and general model 
for determining the geometry of an AL,, system. In 
practice, simplicity and complete accuracy are seldom 
compatible, so a more realistic aim would be the 
determination of the approximate geometry of any 
AL, system by a model which, in principle, could be 
extended to provide an accurate geometry at the 
expense of simplicity. The importance of this point 
must not be underestimated; a model which cannot 
be extended, at least in principle, to being an accurate 
representation of the system is probably not 
representing the system on any level. Having stated 
our aim we shall begin with a brief discussion of the 
reasons why currently available models either fail 
for some systems or are not satisfactory for other 
reasons. 
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Some molecular structure models endeavour to 
determine the value of n for which the combination 
AL, is most stable, others address the question of 
determining the most stable geometry for one A and 
n I_s. Various electron counting rules, such as the 
octet rule for main group elements and the eighteen 
electron rule for transition metals [4] determine n 
correctly in AL, compounds sufficiently often to 
suggest that electron count is one criterion for 
stability. The exceptions which exist suggest that 
there are other factors which contribute to com- 
pound stability. Even within the first row elements 
the existence of L&O compounds for n > 2 suggests 
that more than eight electrons can be accommodated, 
and BF, shows that fewer than eight electrons may 
make a stable compound. Other methods for deter- 
mining n for which the combination AL, is stable 
involve determining the energy of AL,, as a function 
of n (which also involves determining the geometry 
of the most stable AL, for each n). Because of its 
computational utility, MO theory at various levels 
of approximation is the most commonly used tool 
for this purpose though its utility is limited to com- 
paratively small systems. Valence bond based 
approaches (including generalized valence bond 
theory, and various group functional approaches 
[5]) provide alternative approaches which are cur- 
rently less computationally convenient but which 
may prove more appropriate than MO theory for 
some systems. The simplified group functional 
approach of Schipper [S] shows promise for transi- 
tion metal complexes in this regard. 

If rather than determining n one wishes to con- 
centrate on determining the most stable AL,, geom- 
etry for a given n, then a semiquantitative or more 
qualitative approach may be sufficient. Frequently 
the molecular formula of a system can be determined 
experimentally long before its geometry (especially 
in fluid phases) can be ascertained, so it is often 
desirable to have a simple way of deriving the most 
probable geometry or geometries. Currently the safest 
way to proceed is via one of the various qualitative 
MO approaches whose basis is well established, such 
as Walsh diagrams or the ‘Jahn-Teller approaches’ of 
Burdett [3]. (Burdett’s work is based on considering 
the first and second order terms in the perturbation 
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expansion of the potential energy of the system, and 
determining from an MO energy level diagram and the 
symmetries of the vibrations of the system whether 
any vibration causes a net reduction in the energy of 
the system.) An approach based on MO theory can 
clearly be extended, at least in principle, to give an 
accurate answer if required. In practice problems arise 
with qualitative MO approaches when it is not pos- 
sible to determine, by inspection, whether the net 
energy change on altering a geometry is positive or 
negative. Sometimes a semiquantitative determination 
of the changes in overlap integrals between atomic 
orbitals results in a sufficiently accurate estimate of 
the changes in energy upon changing geometry, 
otherwise a proper MO calculation is required. Un- 
fortunately it is difficult to extract general principles 
from a full MO calculation, so each system must 
be treated on its own merits. In addition the nature 
of the MO formalism means that as soon as any 
calculation, even at the SCF level, is performed, full 
exchange symmetry is introduced. Most of the 
exchange symmetry makes only a small contribution 
to the energy of the system, so for a question requir- 
ing only a semiquantitative answer, there is an 
increase in the size of the calculation to little effect. 
This is, however, inescapable with MO theory and is 
part of the reason why an alternative formalism 
which introduces full exchange symmetry at a later 
stage of the calculation may be preferable for some 
tasks [5]. 

A more qualitative and simpler model which has 
been used to rationalize the geometries of a wide 
range of covalent main group molecules is the 
Valence Shell Electron Pair Repulsion Scheme 
(VSEPR) [ 11. VSEPR has intuitive appeal to chemists 
brought up on twoelectron bonds, pairs of electrons 
of opposite spin and the Pauli exclusion principle. It 
involves dividing the valence shell electrons into pairs 
and then determining the geometry by minimizing 
the repulsion between the pairs, the repulsion of lone 
pairs and double and triple bonds being larger than 
that of a single bond, and the repulsion of a single 
bond decreasing with increasing electronegativity of 
the ligand it connects to the central atom. Even if we 
grant some physical reality to the concept of lone 
pairs of electrons, the question remains whether the 
electron pair repulsion is a dominant factor deter- 
mining geometry. We shall return to this point after 
considering the factors which contribute to the total 
bonding energy of an AL, system when we shall 
endeavour to see why VSEPR works when it does 
(many main group covalently bonded systems) and 
why it fails at other times (transition metal systems 
and ionically bonded systems). The aim of this 
work is to provide an alternative, or perhaps an exten- 
sion, to VSEPR which works for most AL,, type 
systems, whether ionic or covalent, ground state or 
excited state, even number or odd number of 

electrons, and whose exceptions are under- 
stood. 

Let us consider a hypothetical stepwise formation 
of the molecule AL,, from its component parts. The 
electron density of an isolated A is spherical. When an 
L approaches closely enough to A to interact, A’s 
electron density is distorted so as to ensure that there 
is enough electron density in the A-L bonding region 
to form a bond, and the remaining electron density 
relaxes to its most stable configuration. The same 
thing happens with each additional L. The energy of 
the final system can be approximated by the sum of 
the contributions from the A-L interactions, the 
L-L interactions (we include in L the region between 
A and L), and the effect of the residual (i.e. non- 
bonding valence shell) electron density. There will be 
an interplay of all these forces. The A-L interaction, 
which is the most stabilizing, is maximized for a 
certain bond length. Thus the most stable AL, system 
will have as many ligands as it has electrons to make 
stable bonds, unless this results in large L-L repulsive 
interactions due to overcrowding. If n is too large for 
the ligands to fit comfortably around A at the 
optimal bond length, then the A-L bond length will 
be increased, perhaps to the extent that the loss in 
stabilization energy per bond is -l/n th of the bond 
energy, in which case AL, _, is more stable than AL,. 
In practice first row A have a maximum of 4 L, 
second and third a maximum of 6, and larger A 
seldom have more than 8 or 9. Let us assume that the 
A-L bond strength is essentially independent of the 
relative orientations of the L (we shall return to this 
below). The L-L interactions and the effect of non- 
bonding electron density on A then determine the 
orientation of the L about A. Within this discussion 
we can see that VSEPR theory takes the next most 
important energetic contribution to be that from the 
residual electrons - it assumes that their most stable 
conformation is as lone electron pairs (if possible). 
Then it assumes that the next largest energetic effect 
is the repulsion of the electrons in bonds and in lone 
pairs. These assumptions clearly break down for very 
ionic systems e.g. Li20, which is probably more 
correctly thought of as Li’202- [3] with the L-L 
charge-charge repulsion dominating the geometry. 
In addition, neither the VSEPR nor a charge modifi- 
cation account for the square pyramidal geometries 
of SbF5 and SbPh5 and the bent geometries of SrFz 
etc. (see below). Problems also arise for transition 
metals which can perhaps be ascribed to the problem 
of determining the valence electrons. This suggests 
that the VSEPR model may also give the ‘right’ 
answers for the wrong reasons in some other in- 
stances. If on the other hand we decide that the L-L 
interactions (their form as yet unspecified) are 
usually the most significant determiners of AL,, 
geometry then we are assuming that the residual 
electrons can adopt a configuration which (under any 
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circumstances) differs from its optimum configura- 
tion by less than the L-L interaction. 

In this work we shall explore the consequence of 
assuming that the L-L interaction dominates the 
orientation of the I_s around A in AL,,. Before 
proceeding, however, we should consider the earlier 
assumption that A-L bond strength is independent 
of the orientations of the Ls. This is obviously not 
completely true, the environment of a bond does 
affect its strength, but it may be sufficiently accurate 
for our purposes. An A-L bond will be weakened by 
a number of factors which are determined by the 
relative positions of the Ls. Firstly, the factor men- 
tioned above that although the L-L interaction is 
assumed to be weaker than the A-L interaction, 
should a proposed geometry require Ls to approach 
too closely (say within a hard sphere radius) then the 
L-L interaction will dominate, forcing the A-L 
bond to lengthen and thus weaken. An A-L bond 
will also be weaker in one geometry compared with 
another if it has less bonding electron density in one. 
For example the C-O bond of formaldehyde is much 
stronger than that of methanoate due to the avail- 
ability of only one carbon electron for C-O bonding 
in methanoate and two in formaldehyde. This idea 
may also be relevant in ‘electron deficient’ systems 
such as boron. BH3 is calculated to be a planar 
geometry [6], yet the L-L interaction (see below) 
favours a pyramidal geometry such as is observed in 
NH3. In BH3 a pyramidal geometry with -two- 
electron bonds would require all the valence shell 
electron density to be concentrated on one side of 
the boron. Such an electron distribution may be 
sufficiently energetically unfavourable for some of 
the valence shell electron density to not take part in 
the bonding of a pyramidal BH, whereas all of it 
would be involved in the bonds of a planar BH,. In 
fact BH3 does not exist as a stable species, it always 
dimerizes to form BzH6 (A1H3 behaves analogously), 
which suggests that the net effect of the above 
discussion is to render BH3 not sufficiently stable to 
exist. BF, by way of contrast is a stable compound 
due to the charge interactions which favour a trigonal 
planar geometry. We shall consider these systems 
further in section III. Bond angles of less than 90°are 
also considered in section III. 
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II. Ligand-Ligand Interactions 

The geometries favoured by the ligand-ligand 
interactions of a molecule are those which minimize 
any repulsive forces and maximize attractive ones. 
The short range L-L interaction is dominated by 
repulsion due to overlapping of electron density on 
the two Ls. For our purposes this repulsion can be 
modelled by a hard sphere radius (more accurate 
descriptions can be achieved by a better short range 

potential) which defines minimum nearest neighbour 
distances. We then assume that the intermediate and 
long-range L-L interaction is not exchange domi- 
nated, so that electrostatic interactions provide an 
adequate description. Perturbation theory can be 
used to expand the electrostatic interaction in a series 
of different terms with varying r-” dependence. 

If L is uncharged, then the dispersion energy is the 
dominant L-L interaction term. The dispersion 
energy due to the interaction of two ligands is 
approximately [7] 

&is& - L2) 93 -3/2E,2a,(r2r12” 

where r12 is the L1--L2 distance, (Yi is the polarizabil- 
ity of Li, and El, = E1E2/(E,+E2) where Ei is an 
average excitation energy of Li (the ionization energy 
of Li is usually a sufficiently good value for Et). Thus 
a given L-L interaction is most stabilizing (i.e. most 
negative) for uncharged L if the L-L distance is as 
small as possible, i.e. if the L-L distance equals the 
sum of the L hard sphere radii. Thus for the total 
L-L interaction to be maximally stabilizing, all Ls 
are brought as close together as possible. At this stage 
it is appropriate to note that this provides a justifica- 
tion for the success of the ‘non-bonded radii’ ap- 
proach to molecular geometry taken by Bartell [2] 
and later by Glidewell [8]. In the next section we 
shall explore the various geometries which result from 
the maximization of dispersion interactions subject to 
a hard sphere radii on the ligands. 

If the L are charged, either intrinsically or due to 
an ionic bond to A providing a partial charge, then 
the charge interaction may become a significant 
factor in determining the geometry of a system. 
The energy due to the interaction of two charged 
ligands is 

(2) 
where qi is the charge on Li and r12 is the L-L 
distance. E&L1 - L2) can be negative (i.e. stabiliz- 
ing) if L1 and L2 have opposite charges. In such a case 
the charge interaction tends to bring the Ls as close 
together as possible. In most instances of interest to 
us in this work the charge interaction is positive and 
so destabilizing. It tends to push the L apart, thus 
opposing the effect of the dispersion interaction. 

The observed geometry in a system with charged 
I_.s is then a balance between the dispersion deter- 
mined geometry and the charge determined geom- 
etry. Ideally some quantitative estimate of the 
relative significance of the two terms is required. The 
ratio of the two energy terms is 

&is,& - L2)/&& - L2) = 

1 .080E12~l~21(r12541~~) (3) 

where El2 is in MJ mol-’ , r12 is in A, (Yi is in A3 and qi 
are in units of electronic charge. The degree of elec- 
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TABLE I. Some Polarizabilities and Dipoles 

Compound Dipole q Fragment Polarizability 
(Dja (ejb (A? 

HF 1.91 0.43 F- 0.96 
HCI 1.08 0.18 Cl- 3.60 
HBr 0.79 0.12 Br- 5.0 
HI 0.38 0.049 I-/I 7.614.96 
LiH 5.828 0.76 Li+/Li 0.03/22d 
LiF 6.38 0.84 H- 10.18 
LiCl 7.08 0.729 He 0.20 
NaCl 8.97 0.79 Na+/Na 0.19/21.5 
CIF 0.85 0.108 Ne 0.40 
BH 1.27 0.22 cs+/cs 2.6142.0 
BF 0.5 + 0.2 0.079 CH;? 2.099 
AlF 1.53 0.195 02- 2.74 
co 0.112 0.021 s2- 8.94 
cs 1.97 0.27 CO 1.95e 
SiO 3.09 0.56 CN- 3.47f 
SiS 1.74 0.17 OH- 1.95f 

aData from ref. 9. bq is the partial charge on the atoms, in 
units of electronic charge. q is determined from the dipole 
by dividing it by 4.80298 times the bond length. Bond 
lengths from refs. 6 and 10. CData from ref. 11. dData 
from ref. 12. eDatum from ref. 13. fData from ref. 14. 

tron transfer across the A-L bond can be determined 
from the bond dipole (dipoles of some diatomic 
molecules are given in Table I). Alternatively the 
degree of electron transfer is approximately related 
to the electronegativity difference of the ligands. 
Some polarizabilities are also given in Table 1. E,z is 
of the order of 1, q is approximately the volume of 
L, r12 is about two times a non-bonded radius, i.e. 
24 8. It is thus possible to make some estimate 
of eqn. (3). In most of the systems we shall be 
examining the dispersion term is the larger, however 
the geometry is frequently modified by charge inter- 
actions as we shall see. Ligands with large charge and 
small polarizability, such as Li+ have their geometry 
dominated by charge interactions. 

II.1. Geometries Which Optimize L-L Dispersion 
Interactions 

In this subsection and the next we shall consider 
the somewhat abstract question of which geometries 
are favoured by dispersion and charge interactions. 
The conclusions are illustrated in Figs. 1 to 6. Appli- 
cations which further illustrate and clarify the con- 
clusions are contained in section III. The L-L disper- 
sion is attractive, so it is maximally stabilizing when it 
has the largest magnitude possible, so our aim is to 
determine what geometries maximize the dispersion 
interaction. 

AL2 

ALlL2 is the simplest molecule for which ligand 
interactions are operative. The L1-L dispersive 
interaction is maximized when the distance between 

P _ 
l 

c- 

r 

bent linear 

I;‘&. 1. Geometry adopted by AL2 molecules. A is indicated 
by a square and the L by circles. p is the optimal A-L bond 
length, r is the inter-&and distance, 0 is the LAL bond angle. 
The bent geometry is favoured by dispersion interactions and 
attractive charge interactions for ligands which are small com- 
pared with the A-L bond lengths. The linear geometry is 
favoured by repulsive charge interactions and large ligands. 

LI and L, r12, is as small as possible. There are three 
situations which must be considered. 

(i) If R1 tR2 <pl tp2 where R, and R2 are the 
hard sphere radii of L, and L2 respectively, and p1 
and p2 are the optimal bond lengths for A-L1 and 
A-L2, then the geometry will be bent, with the bond 
angle, 

6 = cos-‘I[@, +R,j2 -p12 -~2~1/[%~21~ (4) 

as is illustrated in Fig. 1. When L1 = L2 then eqn. (4) 
simplifies to 0 = 2 sin-‘(R/p). 

(ii) If RI + R2 = p1 t p2, then the geometry will 
be linear. 

(iii) If R, + R2 > p1 f p2 then ALlL2 cannot be 
formed with the A-L1, A-L2 bond lengths at their 
optimal values. So either the bonds stretch to accom- 
modate the size of the ligands, and probably form a 
linear molecule or else AL,L2 is not sufficiently 
stable to exist and it is not observed. 

AL3 
The situation for ALIL2L3 is very similar to that 

for ALIL2 since b is a nearest neighbour of Lj in 
any geometry centred on A. Thus the largest disper- 
sion interaction will occur when the ligands are 
separated only by their hard sphere radii and the 
bond angles are determined by eqn. (4). For the sake 
of clarity we shall consider the case where the ligands 
are identical. Small ligands for which Ri <d3pi/2 
adopt a C3” trigonal pyramidal (tpy) geometry; 
ligands for which Ri =d3pi/2 adopt a D3h trigonal 
planar (tpl) geometry; and large ligands for which 
Ri >d3pi/2 either adopt a strained tpl geometry or 
are not observed. The geometries are illustrated in 
Fig. 2. Lower symmetry geometries are adopted when 
the ligands are different. 

ALI, 
It becomes increasingly notationally complex to 

consider geometries with different ligands, so we shall 
concentrate on geometries with identical ligands. The 
geometries favoured by dispersion interactions for the 
lower symmetry systems are simply distortions from 
the higher symmetry ones. The geometries which four 
ligands around a central atom can adopt fall into the 
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tPY tPl 

Fig. 2. Geometry adopted by ALa molecules. A is indicated 

by a square and the L by circles. p is the optimal A-L bond 
length, r is the inter-ligand distance, 0 is the LAL bond angle. 

The tpy (trigonal pyramidal) geometry is favoured by disper- 

sion interactions for ligands which are small compared with 

the A-L bond lengths. The tpl (trigonal planar) geometry is 
favoured by dispersion interactions for large ligands and by 

charge interactions. If the ligands have different sizes or 
charges, a distorted tpl or T shaped structure results. 

categories of tetrahedral (tet), distorted tetrahedral, 
square planar (spl) and distorted square planar. We 
shall begin by comparing the dispersion energies of a 
tetrahedral geometry in which every ligand interacts 
with three other ligands, and a square planar 
geometry in which the ligands can get closer together 
but only interact significantly with two other ligands. 

E&tet) a {-3/4ELolL2)6rij(tet>-” 

and E&~pl) * {-3/4Enonz}4rij(spl)-6 

(5) 

(6) 

where rij is the distance between two Ls. If AL4 can 
adopt a spl geometry without straining the A-L 
bond, i.e. rij(spl) = d2pi > 2Ri, where pi is the 
optimal A-L bond length and Ri is the hard sphere 
radius of a ligand, then the spl geometry is more 
stable than the tetrahedral geometry which requires 
rij(tet) = 2pi sin 109.5” > 2Ri. However, the tetra- 
hedral geometry can accommodate larger ligands 
without A-L bond strain. Since the spl geometry 
can be gradually distorted to become tetrahedral 
one would expect to see a progression from square 
planar to tetrahedral with increasing size of ligand. 
In fact for small ligands maximization of the dis- 
persion interaction will favour a square pyramidal 
(spy) geometry of C,, symmetry, as illustrated in 
Fig. 3. 

AL5 

AL5 has two archetypical geometries: the trigonal 
bipyramid (tbp) of D 3h symmetry and the square 
based pyramid (sbp) of C,, symmetry. The dispersion 
energies for these two geometries, which are illus- 
trated in Fig. 4, are 

E,,(tbp) = {-3/4ELor,*} [6r,(tbp)-6 + 3r,(tbp)-6] 

(7) 
and 

E&sbp) = {-3/4EL~r,2} [4r,(sbp)-6 t 4r,(sbp)-6] 

(8) 

SPY SPl tet 

Fig. 3. Geometry adopted by AL4 molecules. A is indicated 

by a square and the L by circles. p is the optimal A-L bond 

length, r is the inter&and distance, 0 is the LAL bond angle. 
The spy (square pyramidal) geometry is favoured by disper- 

sion interactions for ligands which are small compared with 

the A-L bond lengths. As ligands increase in size dispersion 

interactions favour the spl (square planar) geometry, geom- 

etries intermediate between the spl and tet (tetrahedral) 
geometries and finally the tet geometry. Charge interactions 
favour the same range of structure depending on the relative 
signs and magnitudes of the charges. 

where e denotes an equatorial, b a basal and a an axial 
ligand, ra is the distance between an axial and an 
equatorial/basal ligand, r, between two equatorial 
ligands and rb between two basal ligands. For mole- 
cules which can achieve their optimal bond length, 
PL, r,(sbp)=rb(sbp)=r,(tbp)= &PL, and r,(W)= 
d3pL so the sbp geometry is more stable than the 
tbp. However, if the hard sphere radius is sufficiently 
large that pL < d2RL, then the tbp geometry 
becomes increasingly favoured as all the sbp bonds 
will be strained but only the axial bonds of the tbp 
will be strained. For small L such that pL > &RL a 
distorted sbp, sbpB, of C,, symmetry (see Fig. 4) 
which enables the L to be closer together will be 
favoured. As for the AL4 geometries a continuous 
progression between the geometries of Fig. 4 is 
possible and in fact found (see section III). 

sbpB sbp tbp 

Fig. 4. Geometry adopted by AL5 molecules. A is indicated 
by a square and the L by circles. p is the optimal A-L bond 
length, r is the inter-ligand distance, fI is the LAL bond angle. 
Subscript a denotes axial, subscript b basal, and subscript e 

equatorial. The sbpB (square based pyramid with A below 
the plane of the ligands) geometry is favoured by dispersion 
interactions for ligands which are small compared with the 
A-L bond lengths. As ligands increase in size dispersion 
interactions favour the sbp geometry, geometries interme- 
diate between the sbp and tbp (trigonal bipyramidal) geom- 
etries, and finally the tbp geometry. Charge interactions 
favour the same range of structure depending on the relative 

signs and magnitudes of the charges. 
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The two archetypical geometries for AL6 are the 
octahedron (act) and the triangular prism (tpr). The 
relevant dispersion energies are 

E,,(OCt AL,) Z {-3/4Er,cYL’} 1 2rij(OCt)-6 

E,,(tpr AL6) ry {-3/4ELoL2} [6ri(tp)-6 

(9) 

+ 3r2(tpr)-6 t 3ra(tpr)-6] (10) 

where or is the L-L distance on the ends, r2 is the 
L-L distance on the sides, and r3 = d(r12 + r2*) is 
the diagonal distance across a rectangular face of the 
tpr. The A-L distance in an octahedron bears the 
same relationship to the L-L distance as it does in 
the square plane and square based pyramid geom- 
etries discussed above, viz. rij(oCt) = 42~~. One 
might therefore expect an octahedron or a distorted 
octahedron to be the geometry favoured by disper- 
sion for small ligands. However, the octahedron is the 
AL6 geometry with the largest L-L distance for a 
given A-L distance, so it is also the most favourable 
for large L. Thus the geometry predominantly 
favoured by dispersive interactions for AL6 is the 
octahedron. For small ligands a distorted octahedron 
geometry, rather like a pentagonal bipyramid with an 
equatorial ligand missing, is the next stage. For even 
smaller ligands, a tpr geometry will be favoured since 
the tpr with rl = r2, has pi(tpr) = d7rj(tpr)/(2d3) > 
1.53Ri, thus enabling closer approach of ligands. 

ALI 
There are three standard geometries for an AL7 

mclecule wirich are illustrated in Fig. 6. The pen- 
tagonal bipyramid is favoured for small ligands whose 
dispersion energy is thus maximized with close 
packing, though the dispersion energy of the capped 
octahedron is very similar. Apart from this it is not 
possible to be conclusive since there is very little 
difference between the geometries, and small changes 
in any one of the types of interaction which con- 
tribute to the stability of a molecule can result in a 
different geometry being preferred. 

II.2. Geometries which Optimize L-L Charge 
Interactions 

The interactions between the charges on two 
ligands can be either repulsive or attractive, and 
within any one molecule with more than two ligands 
there can be either a mixture of both types of inter- 
actions or only repulsive ones. In this section we shall 
determine the geometries which are favoured by 
charge interactions. Molecules where all the ligands 
have the same charge will adopt the geometry which 
maximizes the inter&and distance. The types of 
geometries adopted by molecules with ligands of 
different charges can be determined by considering 
the effect of adding the ligands one at a time. 

doct act trig tpr - 

Fig. 5. Geometry adopted by AL6 molecules. A is indicated 

by a square and the L by circles. p is the optimal A-L bond 
length, Y is the inter-ligand distance, 0 is the LAL bond angle. 

The tpr (triangular prism) geometry is favoured by dispersion 
interactions for very small and the doct (distorted octahedral) 

geometry for small ligands. The act (octahedral) geometry is 
most commonly found. 

pbp coct csbp 

Fig. 6. Geometries adopted by AL7 systems. Pent = pen- 

tagonal bipyramid, coct = capped octahedron and csbp = 
capped square based prism. 

AL2 

An attractive charge interaction will favour a bent 
geometry with the angle determined by the hard 
sphere radius for AL*, and a repulsive interaction will 
favour a linear geometry. These are illustrated in 
Fig. 1. 

Charge interactions in a molecule with three 
ligands whose charges are identical will adopt the 
geometry which maximizes the distance between the 
ligands, i.e. tpl (cf: Fig. 2). 

A molecule with two ligands of the same charge, 
ql, and one of charge q2 has 

Qh(LLL2) = qd2/(p sin W4 + 422/(2p sin 4/2) 

(12) 

where 6 is the LlAL2 angle, 4 the LrALr angle (@= 
360” - 219 for a planar geometry), and for simplicity 
we have assumed a constant A-L bond length p. If 
q1 and q2 are of opposite sign then eqn. (12) is 
negative (i.e. stabilizing) as long as 

(42/q II < 2 sin($/2)/sin(0/2) G l/(4 cos 8/2) (13) 

(the equality holding if the geometry is planar). The 
geometry favoured by charge interactions when q1 
and q2 have opposite signs is that which enables 6 
to be as small as possible (thus 0 is determined by 
hard sphere radii) and @ as large as possible while 
still obeying eqn. (13). Thus we expect to see a 
distorted planar or T shaped geometry for q1 and 
q2 of opposite sign. If on the other hand q, and q2 
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are the same sign, the charge interaction is always 
destabilizing, and is a minimum when the molecule 
is planar and 

4q2 c0s3e/2 + q1 cam e = 0, e > 90” (14) 

E, does not vary much in the region of 0 = 90”, so 
a bond angle of less than 90” may be observed if the 
dispersion energy favours a smaller angle. We shall 
return to this below. The geometry the system adopts 
is the one which maximizes the attraction, and mini- 
mizes the repulsion, i.e. a T or bent-T shaped geom- 
etry with the differently charged ligand at the base of 
the T. 

AL4 

Charge interactions of two positive and two nega- 
tive ligands will favour a spy or spl geometry, with 
nearest neighbours of opposite sign and the nearest 
neighbour distances being determined by hardsphere 
radii. Exceptions to this may occur for large ligands 
which cause the A-L bond to be strained. Distortion 
towards a tetrahedral geometry may then take place. 

For one positive and three negative ligands (or the 
converse), charge interactions will favour a trigonal 
pyramidal or distorted tetrahedral geometry, with the 
positive ligand at the apex. Depending on hardsphere 
radii and relative charge magnitudes, the geometry 
may be bent so A is slightly below the plane of the 
three negative ligands. 

Charge interactions for four ligands of the same 
charge will favour a tetrahedral geometry which 
maximizes their separation. 

AL5 

The charge interactions of one positive and four 
negative ligands will adopt a geometry where the 
negative ligands favour a tetrahedron which is dis- 
torted towards the positive ligand sited in one of the 
tetrahedral faces. This geometry can equally well be 
described as a trigonal bipyramid distorted towards 
one of its apices, which illustrates the arbitrariness 
of labels given to intermediate geometries. 

Charge interactions of two positive and three 
negative ligands will adopt a distorted trigonal bi- 
pyramidal geometry, with the positive ligands at the 
apices. The degree of distortion will be determined 
by the relative positive and negative charges since the 
attractive interactions favour bending the planar 
ligands until they meet the hard sphere radies of an 
apical ligand, and the three negative ligands minimize 
their repulsion when they are in the equatorial plane. 

Five ligands with the same charge will favour a tbp 
geometry cf Fig. 4. 

‘4L6 

The AL6 geometry favoured by a system with six 
ligands of the same charge is the octahedron, and just 
as the attractive dispersion interactions generally 

result in an octahedron or a distorted octahedron, 
charge interactions which involve some attractive 
ones will result in a distorted octahedral-type 
geometry cf Fig. 4. 

III. Applications 

In the previous two sections we have examined 
the types of geometries favoured by dispersion 
interactions and charge interactions. An additional 
factor which must be taken into account is whether 
a particular geometry involves significantly weaker 
A-L bonds than an alternative geometry. A com- 
paratively weak A-L bond can be identified in a 
number of ways: (i) if a proposed geometry requires 
the A-L bond length to fall outside the range of 
typical A-L bond lengths (i.e. a strained geometry); 
(ii) A-L bonds are either electron deficient or the 
valence shell electron density is concentrated in one 
direction. (i) has already been discussed above, and 
we shall return to (ii) below. An additional restraint 
is that bond angles of significantly less than 90” are 
not observed even when predicted by dispersion or 
charge interactions. We could treat this as a purely 
empirical rule, however its origin should be able to 
be traced to an energetic contribution that was 
ignored in section I. We have been concentrating 
exclusively on the energetic contributions of inter- 
ligand dispersion and charge interactions, with some 
consideration being given to bond strain. In doing this 
we have completely ignored the factor considered so 
important in VSEPR theory, namely the repulsion of 
electrons in bonds. This repulsion becomes more 
significant when small bond angles force the elec- 
trons near the nuclei close together, and probably 
accounts for the smallest bond angles being about 
90”. This repulsion can be viewed as the ‘hard sphere’ 
repulsion of the electron density in the bonds. Under 
normal circumstances it can be ignored because the 
repulsion of the ligand electron densities prevents 
the bonds coming close enough together for it to 
be relevant. 

Before proceeding some estimate of hardsphere 
radii is required. The non-bonding radii of Bartell 
and Glidewell determined for covalent systems 
provide a reasonable estimate for a range of com- 
pounds. These are given in Table II. If an atom is 
bonded to another atom of higher electronegativity 
than four coordinated carbon, then its hard sphere 
radius will be smaller than the values in Table 11, and 
conversely if bonded to a less electronegative atom. 

AL2 

The geometries adopted by AL2 systems illustrate 
the principles discussed in the previous sections. 
Table III contains the data required to predict the 
dispersion favoured geometry, a table of electro- 
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TABLE II. Non-bonded Radii (A) of Bartell [ 21 and Glidewell [ 81 Determined from Assuming Covalently Bound Geometries are 
Determined by Close Packing 

H = 0.92 

Be = 1.39 B = 1.33 c = 1.25 N = 1.14 0 = 1.13 F = 1.08 

AI = 1.85 Si = 1.55 P = 1.46 s = 1.45 Cl = 1.44 

Ge = 1.58 Se = 1.58 

Sn = 1.88 Sb = 1.88 Te = 1.87 

negativities (see for example ref. 10) enables an 
estimate of the relative significance of the charge 
interactions. Table III also contains the predicted and 
observed geometries. To a large extent Table III 
speaks for itself, though some comment is required. 
Let us begin by considering a typical entry, say BF2. 
The A-L bond length, p, is 1.31 A, the hard sphere 
radius of F will be larger than in say CHsF, so 
>I .08 A, thus the dispersion favoured geometry has 
a bond angle of > 111”. There is probably a little 
influence from charge interactions, which in isolation 
would favour a linear structure, so we would predict 
a slightly larger bond angle than the dispersion 
favoured angle. The experimental structure in fact has 
a bond angle of 118’, in accord with this discussion. 

The bonding in BeH2 is essentially covalent so we 
need only consider the effects of dispersion interac- 
tions and the H-Be bond strength. Figure 7 is the 
calculated electron density for linear BeHz and bent 
BeHz [15]. It is interesting to note that the outer 
electron clouds of the two geometries are approxi- 
mately superposable about their centres of mass, 
indicating that it is not energetically favourable for 
the beryllium to put all its valence shell electrons into 
bonds when this requires a significant distortion of 
the electron density. Thus A-L bond strength factors 
determine the geometry of BeHz in accord with the 
discussions of section I. 

Hydrides of the larger atoms have hard sphere 
radii which are small compared with the bond 
lengths. A geometry in which hard spheres are in 
contact then requires a bond angle of much less than 
90”, which as discussed above, is not a favourable 
geometry due to repulsion by the electron density 
in the bonds. The hydride geometries can then be 
understood in terms of the discussion of the previous 
sections. The CH2 geometries are illustrative. The 
ground state bond angle is about 10” less than that 
predicted using the hardsphere radius of H deter- 
mined from four-coordinate carbon systems. Such a 
deviation requires only a decrease in the hard sphere 
radius of H of 0.05 A from its value of 0.92, which 
can be understood in terms of the different electron 
densities on an H when the electron-withdrawing 
power of the carbon is shared among two hydrogens 
instead of four hydrogens. The 3B, state has less 
electron density on the hydrogens than the ground 
state, and so a smaller bond angle is favoured by the 

bent 

Fig. 7. Electron density maps of bent and linear BeHz [ 151. 

dispersion interactions, however, the decrease in 
electron density on the hydrogens results in a positive 
charge and very small polarizability. Charge interac- 
tions then lead to a larger bond angle than in the 
ground state. 

The fluorides all show some effect of charge inter- 
actions on the geometry, as expected due to their 
large electronegativity and small polarizability. It 
would appear that charge effects are not usually 
actually dominant in fluoride systems unless they 
are intrinsically charged. Repulsive charge interac- 
tions simply cause the observed bond angle to be 
greater than that predicted by dispersive interactions 
alone, and attractive charge interactions (e.g. in 
HOF) cause it to assume its dispersive geometry since, 
for linear compounds, both dispersion and attractive 
charge interactions favour the bond angle being deter- 
mined by the hard sphere radius. 

It is interesting to follow trends in ground state 
geometry across and down the periodic table. As A 
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TABLE HI. Data Illustrating the Relationship between L-L Interaction Predictions and Experimental Geometries for AL2 a 

Compound P (AI R (A) Geometry favoured by Experimental Comment Reference 

dispersion charge 

Hydrides 

H-Be-H 
H-B-H 
H-C-H 
H-C-H, 3Bt 
H-N-H 
H-N-H- 
H-O-H 
H-O-H+ 2B 1 

H -Si-H 
H-P-H 
H-S-H 
H-Se-H 
H-Te-H 

1.3 >0.92 e > 90” 
1.18 >0.92 e > 102” 
1.11 <0.92 e < 112” 
1.08 >0.92 e > 117” 
1.02 <0.92 0 < 129” 
1.03 <0.92 0 < 127 
0.96 40.92 e 4 146” 
1.00 40.92 e 4 134” 
1.52 > 0.92 8 ~75’ 
1.43 >0.92 e > 80” 
1.34 0.92 e z 87” 
1.46 0.92 e %78” 
1.66 >0.92 0 > 67” 

linear 

linear 
linear 

linear (calcn) 
e = 131” 
8 = 102.4 
e= 136 
e = 103.4” 
e = 104” 
0 = 105.2” 
e = 110.5” 
0 = 92.1” 
e = 91.5” 
e = 92.1” 
e = 90.6” 
e = 90.3” 

Fluorides 

F-H-F- 
F-B-F 
F-O-F 
F-Si-F 
F-P-F 
F-S-F 
F-Zn-F 
F-Be-F 
F-Mg-F 
F-Ca-F 
F-Sr-F 
F-Ba-F 

1.13/4 >1.08 
1.31 >1.08 
1.41 <1.08 
1.58 >1.08 
1.55 >1.08 
1.59 1.08 
1.81 >1.08 

e > 143 
e > 111” 
e < 99” 
e > 86” 
e > 88” 
6 W 86” 
e > 73” 
bent 
bent 
bent 
bent 
bent 

linear 
linear 

linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 

linear 
0 = 118” 
e = 103.1” 
8 = 108.3” 
e = 97.7” 
0 = 98.2” 
linear 
linear 
linear 
140” 
108” 
100” 

Oxides and nitrides 

o-c-o 1.22 >1.13 e > 136” 
o-o-o 1.28 <I.13 e < 124” 
O-N-O = 1.23 al.14 e = 136” 
O-N-O+ 1.15 ml.14 e a 165” 
O-N-O- 1.24 f ? cl.14 e = 134”t? 
N-N-N- El.10 w1.14 linear 

linear 
linear 

linear 

linear A-L 10 
e = 116.8” disp. dom. 6 
e = 134” 6 
linear charge 6 
115.4’+ ? 6 
linear with long bond length 6 

ChIorides and sulfides 

CI-O-Cl 1.7 <1.44 8 < 115” e = 110.9” 
Cl-S-Cl 2.014 >1.44 e >91” 8 = 102.7” 
s-c-s 1.6 1.45 9 > 130” linear 

Mixed ligandsb 

H-O-F 0.97,1.44 
H-C-N 1.08, 1.16 
H-N-C 1.01, 1.16 
H-C-P 1.08, 1.54 
H-N-O 1.06, 1.21 
H-P-O 1.43,1.51 
H-O-Cl 0.98, 1.69 
O-C-F =I.22 ,--1.38 
N-S-F 1.45, 1.64 
O-N-Cl 1.21,1.97 

f3 < 111” 
e = 142” 
e = 180” 
8 = 130” 
0 < 129 
0 > 88” 
e < 122” 
0 = 116” 
e > 92” 
e > 105” 

bent 

linear 

linear 

e = 96” 
linear 
linear 
linear 
e = 108.6” 
e = 104.7” 
0 = 102.5” 
e = 126” 
e = 116.9” 
e = 113.3” 

A-L 

charge 

i.e. R = 0.76 

A-L 
A-L 
A-L 
A-L 

charge dom. 
little charge 

charge 
charge 
charge 
charge dom. 
A-L 
A-L 
disp. dom. 
disp. dom. 
disp. dom. 

A-L 

charge + disp. 
A-L 
A-L 
A-L 

15 
16 
6 
6 

16 
6 
6 
6 
6 

16 
6 
6 
6 

6 
6 
6 
6 
6 
6 

17 
17 
17 
17 
17 
17 

6 
6 

10 

6 
6 
6 
6 
6 
6 
6 
6 
6 
6 

(continued) 
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TABLE III. (continued) 

A. Rodger and B. F. G. Johnson 

Compound P (A) R (A) Geometry favoured by 

dispersion charge 

Experimental Comment Reference 

Metallic A 

CN-Ag-CN- 3.29 al.25 bent linear linear charge dom. 10 

Zn(CHh 1.929 ==2 linear linear 6 

Cd(CHsl2 2.112 -2 linear linear 6 

ap is the A-L bond length, R is the L hard sphere radius, 0 is the LAL bond angle. In the comments column, A-L means either 
that the experimental geometry is different from the dispersion/charge predicted one due to weaker A-L bonds in the geometry 

predicted by considering only L-L interactions, or that the bond angle is too small to be observed (see text). Charge indicates 

that charge interactions have some influence on the structure, dom = dominant, disp = dispersion. bSee Table II for R values. 

goes down any period, the dispersion energy favours 
a smaller LAL angle, since the bond length increases 
and the hard sphere radii of L increase only slightly 
(due to decrease in electronegativity of A). As A goes 
across a period, its electronegativity increases so the 
hard sphere radius of L decreases and the A-L bond 
length decreases. Both effects result in an increase in 
0 being favoured by dispersion. As L goes down the 
table the main factor is an increase in its size, so an 
increase in 0 is favoured by dispersion interactions. 
As L goes across a period, it decreases in size and 0 
decreases. The effect of charge interactions depends 
on the degree of charge transfer between A and L; if 
this increases then charge effects become more 
significant, if it decreases then less significant. All 
these trends can be observed in Table III. 

The alkali earth halides provide a series of com- 
pounds which illustrates the interaction of repulsion 
due to charge and attraction due to dispersion. BeF2 
and MgF2 are linear, but CaF2 (13 = 1404, SrF2 (0 = 
1089 and BaF, (0 = 1004 are bent, in addition 
CaC12, CaBrz and Ca12 are all linear (cf. Table III). 
For the A which are further down the periodic table, 
the repulsive effects of charge interactions and A-L 
bonding effects do not completely dominate the 
attractive dispersion forces, hence the bent molecules. 

A~53 

An AL3 system can adopt one of two types of 
geometries: (i) tpl and planar distorted tpl, both of 
which are favoured by dispersion interactions of L 
which are large compared with the A-L bond length, 
and by charge interactions, and (ii) tpy which is 
favoured by dispersion interactions between smaller 
L. If the ligands vary sufficiently in size or charge 
then the planar distorted tpl geometry is more 
accurately described as a T shape. 

A wide range of compounds can be cited to illu- 
strate the effect of dispersion interactions in deter- 
mining geometry. Some of the data in Table IV 
illustrate this, as does the success of the non-bonded 

radii approach of Bartell and Glidewell. The prefer- 
ence of bulky non-charged ligands for a trigonal 
planar geometry has been clearly illustrated by 
Glidewell with a number of NL3 molecules with 
large L [8]. Another interesting illustration of prefer- 
ence for a planar geometry is provided by NHa. In 
its ground state N-H = 1.012 A and 0 = 106.5”, 
which is consistent with R < 0.92 A (N is more elec- 
tronegative than C). However, in the A2 excited state 
of NH3 some electron density has moved from the N 
2p,-type orbital to the largely hydrogenic totally 
symmetric orbital. This results in an increase in the 
hard sphere radius of the hydrogens and a small 
increase in the N-H bond length to 1.08 A. Disper- 
sion interactions thus favour a larger bond angle, 
and an element of repulsive charge interaction has 
perhaps also been introduced. It is no surprise there- 
fore to discover that the observed geometry of the 
A2 state is trigonal planar. 

T shaped geometries are least common, the best 
known examples being ClF, and BrF3 whose bond 
angles are respectively (87.5”, 87.5”, 185.0”) and 
(86.2”, 86.2”, 187.6”). Dispersion interactions favour 
a pyramidal geometry for these two compounds, 
however the most stable geometry has one fluorine 
with less electron density than the other two [ 151, so 
charge interactions favour a T shape. Such a structure 
has a lower charge repulsion (cf. eqn. (14)), and is 
observed for these molecules because the net A-L 
bond energy is not significantly reduced, and may 
even be increased, by the unequal distribution of 
electron density. These mixed halide systems are far 
from typical compounds due to the large electro- 
negativities of both central atoms and ligands. The 
actual F-Cl-F and F-Br-F bond angles indicate 
the influence of the dispersion interaction; the charge 
interaction is, by eqn. (14), minimized for a 0 > 90”, 
rather than at 87 5’ and 86.2”. The distorted trigonal 
geometries of HgL,- and Rh(Pa3),’ are perhaps 
other examples of this phenomenon, though the Rh 
complex may just be the result of packing of the 
phosphines. 
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TABLE IV. Data Illustrating the Relationship between L-L Interaction predictions and Experimental Geometries for ALsa 

Compound P w R (A) Geometry favoured by 
------_-_------- 
dispersion charge 

Experimental Comment Reference 

Group 6 halides and hydrides 

NF, 1.371 
PF3 1.570 
AsF3 1.706 
SbF3 1.92 
SbC13 2.33 
PC13 2.04 
PBrs 2.20 
P’3 2.43 
NH3 1.012 
PH3 1.420 
AsH3 1.511 
SbH3 1.704 

Boron compounds 

BHs 1.19 
BF, 1.307 
CH3, 2A2” 1.079 
ScF3 1.91 

Oxides 

co,* 1.29 
ClO, 1.48 
BrO, 1.64 
LO, 1.82” 
FClOs 1.70, 1.42 

< 1.08 0 < 104” 
>1.08 0 > 81” 
>1.08 e > 19” 
>1.08 e > 68.5” 
>1.44 6 > 16” 
=>1.44 0 > 89” 
=>1.55 I3 > 90” 
= >1.88 e > 101” 
<0.92 f3 < 130” 
>0.92 e > 81” 
>0.92 e > 75” 
>0.92 0 > 65” 

>0.92 e > 101” 
>1.08 e > 111” 

0.92 e = 117” 
>1.08 8 >69” 

w1.13 e CI: 122” 
<1.13 0 < 96” 
<1.13 e < 81” 
<1.13 e < 77” 

OClO % 105” 
OClF = 90” 

tPl 
tPl 
tPl 
tPl 
tPl 
tPl 
tPl 
tP1 

tPl 

tP1 

tPl 
tP1 
tPl 
tPl 
?tp1 

e = 102.2” 
e = 91.8” 
e = 96.2” 
0 = 81.5” 
0 = 91.2” 
e = 100.3” 
e = 101.0” 
e = 102” 
0 = 106.5” 
e = 93.3” 
e = 92.1” 
e = 91.6” 

tPl 
tPf 
tPl 
tP1 

tPl 
tpy, e = 106” 
tpy, e = 105.5” 
tpy, e = 99” 
OCIO = 115.2” 
OClF = 101.7” 

charge, A-L 
charge, A-L 
charge, A-L 
charge, A-L 
charge 
charge 

A-L 
A-L 
A-L 

A-L, see text 

charge dom. 

charge 
charge 
charge, A-L 

6 
6 
6 

17 
6 

17 
17 
17 
6 
6 
6 
6 

18 
18 
18 
18 
6 

a~ is the A-L bond length, R is the L hard sphere radius, e is the LAL bond angle. In the comments column, A-L means either 
that the experimental geometry is different from the dispersion/charge predicted one due to weaker A-L bonds in the geometry 
predicted by considering only L-L interactions, or that the bond angle is too small to be observed (see text). Charge indicates 
that charge interactions have some influence on the structure, dom = dominant, disp = dispersion. 

The group six halides are helpful illustrations of 
the interplay of the factors which determine geom- 
etry for identical ligands. We consider first the 
variation of A. Both NF3 and PF3 geometries show 
the influence of charge interactions, the less electro- 
negative P being more affected. AsF, cannot attain its 
dispersion favoured geometry due to A-L bond 
strength considerations (see above), and shows little 
less influence from charge interactions than PF3. (As 
and P have about the same electronegativity but the 
degree of charge transfer decreases down the period.) 
BiFs has not yet been observed, possibly due to the 
fact that at bond angles favoured by A-L bond 
strength, the dispersion energy is too small to counter 
the destabilizing effect of the charge interactions. 
The effect of varying L can be examined by con- 
sidering a series of phosphorous halides: as the halide 
gets larger and less electronegative the geometry 
approaches more closely the dispersion favoured 
geometry (cf. Table IV). The behaviour of the group 
six hydrides is very similar to that of the halides but 
without the charge influence. 

The most stable geometry for BH3 is calculated to 
be tpl with bond length of about 1.19 A. Dispersion 
interactions favour a geometry with a bond angle of 
>lOl”. As charge interactions will be small, A-L 
bond strength is the geometry determining factor. In 
fact, as mentioned in section I, a planar BH3 geom- 
etry is not sufficiently stable to be normally ob- 
served, a bridged geometry with each B in an approxi- 
mately tetrahedral site is observed. This geometry has 
favourable dispersion interactions. AlHs behaves in 
the same manner as BH3, however, BF, is observed, 
which reflects the effect of charge interactions which 
in BF, stabilize the tpl geometry. 

The general trends in oxides are worth examining. 
B033-, C032-, NO; are all tpl, whereas the longer 
bond length compounds, S032-, C103-, BrO;, IO, 
(see Table IV) are all pyramidal illustrating the effect 
of dispersion forces even in charged systems. 

Three-coordinate metal complexes [ 191 exist for 
a wide variety of metals. They generally involve large 
ligands and adopt approximate trigonal planar geom- 
etries, which are usually planar. Some complexes 
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adopt non-planar geometries with bond angles 
larger than are possible in a tetrahedral structure. 
HgBrs- is an example of a non-planar three- 
coordinate complex, having the Hg 0.32 A out of the 
Br plane and Br-Hg-Br bond angles of between 
113.3”and 125.3”. 

ALa 

The possible geometries for an AL4 system fall 
into the continuous series square pyramidal to square 
planar to tetrahedral illustrated in Fig. 5. The spy 
geometry enables the closest approach of the ligands 
so is favoured by attractive forces between small 
ligands. The tetrahedral geometry puts the ligands as 
far apart as possible for a given A-L bond length, so 
is favoured by repulsive interactions and large ligands. 

A range of examples [ 171 exist which illustrate the 
dominance of dispersion interactions in determining 
the geometries of main group four-coordinate 
systems. Some of these are given in Table V. Charge 
interactions become less significant with increasing 
coordination number, due to the larger number of 
ligands sharing the electron donating or withdrawing 
power of one A. Thus dispersion energies seem to be 
the most significant factor determining geometry 
even for fluorine compounds in four-coordinate 
systems. Bartell’s success in accounting for the 
geometry of fluorine substituted compounds using a 
hard sphere model illustrates this point [2]. Charge 
interactions cannot, however, always be ignored in 
charged systems such as some of the oxides and 
halides given in Table V. Unfortunately lack of bond 
length information means that we cannot be as 
definitive as we could for Ah and ALs. 

Four coordination is particularly important for 
some transition metals. The effects of increasing A-L 
bond length as one goes down the periodic table is 
illustrated by the series Cu(II)-Ag(II)-Au(H) and 
Ni(II)-Pd(II)-Pt(I1) (cf Table V). Ag, Au, Pd and Pt 
complexes are invariably planar, whereas both square 
planar and tetrahedral Ni complexes are found (some 
of which adopt either geometry depending on the 
circumstances) and Cu complexes are usually tetra- 
hedral. The effect of ligand size can be seen in the 
Ni(I1) complexes of Table V. Alkyl phosphines form 
square planar geometries and the bulkier aryl phos- 
phines result in tetrahedral geometries, the change- 
over point being Ni(PR@2)22+. NiX2(PR&, X = Cl, 
Br, I, show analogous behaviour, the chlorine com- 
pounds being planar, the iodine compounds being 
tetrahedral and the Br compounds being both or 
either geometry. Nix2 L and NiL2 where L is a 
bidentate ligand and X = Cl, Br, I, NCS or NC0 also 
often adopt both planar and tetrahedral geometries. 
The length of the bite of the bidentate ligand can be 
a determining factor here. The significance of charge 
interactions is illustrated by Nix, and NiX3L-, 
X = Cl, Br, I, NCS or NC0 which are all tetrahedral 

and Ni(CNg)4- which is square planar. Charge inter- 
actions can be sufficient to encourage a geometry to 
be tetrahedral if the dispersion energy plus A-L bond 
energy is not significantly different between the two 
geometries. However, for a small ligand which 
exhibits no A-L bond strain and maximum disper- 
sion interaction in a square planar conformation the 
charge interactions may have no visible effect. In the 
context of A-L bond strain it should be noted that 
the bonds in square planar Ni(I1) are shorter than in 
tetrahedral Ni(I1) by about 5% due to the difference 
between high spin and low spin electron configura- 
tions. This serves to accentuate the bond strain in the 
close placked geometry compared with the tetra- 
hedral geometry, and also the comparatively reduced 
dispersion interaction in the tetrahedral geometry. 
It does not alter the discussion given above. 

ALs 
The trends in AL5 geometry as a function of 

ligand size with respect to A-L bond length are 
illustrated in Fig. 4. The difference in dispersion 
energy between a square based pyramid and a trigonal 
bipyramid is not large, but it does influence the 
geometry adopted by the system as is illustrated by 
the fluorides in Table VI. The compounds with long 
A-F bond lengths and little influence from charge 
interactions are spy with bond angles of less than 90”, 
those with shorter bonds or larger Fs (due to less 
electronegative As) are tbp. 

Various stages between the sbp and tbp geometries 
can be found, as the geometries can be continuously 
distorted into one another, for example CO”(CN)~~-, 
has a distorted sbp geometry with an axial-equatorial 
bond angle of 97.6”. Charge interactions are presum- 
able significant in determining this geometry with 
more electron density on the axial CN. Ni”(CN)53- 
has an axial-basal bond angle of 101 .O” when it 
adopts a distorted sbp geometry, reflecting its 
even shorter bond lengths compared with the 
Co complex. It can also be found in a tbp geom- 
etry. There is a tendency for charged ligands to 
be involved in tbp geometries reflecting the contribu- 
tion of charge interactions. Examples of this are 
CUCKOO-, SnC15- and Pt(SnC13)s3-. 

AL6 
Many examples of octahedral AL6 geometries 

could be cited especially where A is a transition 
metal, as is apparent from reference to any inorganic 
chemistry text book (e.g. ref. 4). Octahedral six- 
coordination compounds where A is not a transition 
metal include Sex:- and TeXz-, X = Cl, Br, which 
adopt undistorted octahedral geometries. Further 
examples are given in Table VII. Some examples of 
distorted octahedra, including XeF,, can be found 
for molecules whose ligands are small compared with 
the A-L bond length and thus favour a more 
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Compound Experimental 

P (A), eb 

Geometry favoured by 

dispersion charge 

Comment Reference 

Hydrides 

‘=4 
SiH4 

CH3F 

1.092, tet 
1.481, tet 

1.10,1.38, HCH = 110.6” 

Oxides and halides 

SiO, 
Pods- 

ClO, 

SF4 
IOzFZ- 

BrF4+ 
BrF4- 

ICl, 

Te(CH&C12 
Tic14 

voc13 

m1.63, tet 
~1.54, tet 

=1.7,tet 

= 1 S8, dist. spl 
I-O = 1.93,OIO = 100” 

IF = 2.0, FIF = 180” 

1.69,2.29,0 = 93.5” 

1.89, spl 
2.42-2.60, spl 
ClTeCl = 180” 

2.17, tet 
1.57,2.14,ClVCl= 111.3” 

Nickel, palladium, platinum complexes 

NiC142- 2.692, tet SPY 
NiBr>- tet SPY 
NiIa2- tet SPY 
Ni(CN)g2- spl spl 
NiCl2(PMe& 2.27,2.28, ClNiP in. 75” ClNiP = 79” 
NiC12(PPh3)2 tet ?tet 

NiCl2(PHPh2)3 tbp (n.b. 5 coordinate) tbp 

NiBrz(PEtPh& 
NiBrz(PPh2benzyl)2 
NiBrz(PPh& 
NiBrz(diars) 
Ni12(PMePh2)2 

Pd/Pt(NH3)42+ 

Pd/PtC142- 
Pd/Pt(CN)42- 
Pd/PtenCl* 

spl or tet 

tet 

spl 
tet 

spl 

spl 
spl 
spl 

Copper, silver, gold complexes 

Cu-C = 2.00, tet ? 

tet tet 
tet tet 
not tet ?spl 
dist. tet spl-tet 
dist. tet spl-tet 

spl ?spl 

spl ?spl 

spl spl 

0 = IlS”, tet 

e > 77” 
HCH < 122”, HCF > 73” dist. tet A-L, charge 

spl ?dist. , . 
spl-tet 

spl 

spl-SPY 
010 a 72” 

SPY 

SPY 
e = 73”, SPY 

CH3’s close 
e > 83” 
e > 85” 

spl-tet 
spl or tet 
tet 
?spl 
tet 

spl 

spl 

spl 
spl 

tet 
tet 

tet 

FIF = 180” A-L 

tet 

tet 
ClTeCl = 180” 

tet 

tet 

tet 
tet 
tet 
tet 

spl--tet 

tet 

tet 
?tet 

tet 

tet 

tet 
tet 
tet 
tet 

tet 

charge 

charge 

some charge 

A-L 

charge 

charge 

charge dam. 
charge dom. 
charge dom. 
disp. dom. 
disp. dom. 

18 
18 
18 
18 

18 
18 

18 tet too spaced, 

spl too crowded 

17 
17 
18 
18 
18 
18 

18 

18 
18 

6 
6 

6 

17 

17 

17 
17 

17 

17 

17 
17 
17 

6 
6 

disp. dom. 

18 

18 

18 
18 
18 
18 
18 

18 

6 

ap is the A-L bond length, 0 is the LAL bond angle. A-L bond lengths are given in the order that the ligands appear in the 
molecular formula, similarly bond angles. In the comments column, A-L means either that the experimental geometry is differ- 
ent from the dispersion/charge predicted one due to weaker A-L bonds in the geometry predicted by considering only L-L 
interactions, or that the bond angle is too small to be observed (see text). Charge indicates that charge interactions have some 
influence on the structure, dom = dominant, disp = dispersion. bSome bond lengths estimated from ref. 10. 
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TABLE VI. Data Illustrating the Relationship between L-L Interaction Predictions and Experimental Geometries for ALs a 

Compound Experimental 

P(A),0 b 

Geometry favoured by Comment Reference 

dispersion charge 

Halides 

XeFs+ p,, = 1.88, Pa = 1.81,0, = 79”, $, = 88” 0 = 73”, spyB disp. dom. 20 
IF, l.88,f3a=81°,sbpB e = 70” A-L 17 
BrF5 ~a = 1.68,pb = 1.81,.9,= 84”, sbpB e = 80” A-L 17 
ClF, P = 1.534,Ba < 90”, sbpB e =89” 17 

VF5 P = 1.7, tbp e >79’ tbp 6 
NbF5 P = 1.88, tbp e > 70” W A-L 6 

PF5 peq= 1.53,~,= 1.577,tbp e > 90” 17 
TeFS- pa = 1.85”, P,, = 1.96,8, = 79”, sbpB e = 80” 17 
SbCl,‘- P,, = 2.36, p,, = 2.62, ea = 85” e > 75” tbp A-L 17 
cuc153- tbp ?sbp tbp charge 17 
Co(CN)p- Ba = 97.6”, sbpA sbp tbp 25 
Ni(CN)53- pa = 2.17, @, = 1.86,0 = 88.6”, 0, = 99.0”, sbpA eb > 84” tbp disp. dom. 17 

c:153- 
pe = 1.91 & 1.99, pa = 1.84, N-Ni-N = 173” dist. tbp tbp disp. dom. 17 

pe = 2.39, pa = 2.30, tbp SPY tbp charge 17 

CuW+3)@KS, 2.0, 1.92, tbp, NH3 axial tbp 18 

CuUbipY)z 2.02, Cu-I = 2.71 ?tbp 18 

*$, is the bond angle between basal ligands in spy geometries and 8, between axial and basal ligands. pe = equatorial bond length, 

pa = axial bond length and pb = basal bond length. sbpA denotes a square based pyramid distorted so that the central atom is 
above the basal plane, i.e. more spread out than sbp, sbpB one where the central atom is below the basal plane, i.e. more clustered 
than sbp. In the comments column, A-L means either that the experimental geometry is different from the dispersion/charge 

predicted one due to weaker A-L bonds in the geometry predicted by considering only L-L interactions, or that the bond angle 
is too small to be observed (see text). Charge indicates that charge interactions have some influence on the structure, dom = 
dominant, disp = dispersion. bSome bond lengths estimated from ref. 10. 

clustered geometry than the octahedron. Isolated 
examples of triangular prismatic geometries exist, for 
example Re(S2C2@2)3 [22] which appears to safisfy 
the criterion of requiring a long L-L distance com- 
pared with the M-L bond length. 

The requirements for a triangular prismatic geom- 
etry are in accord with the Bailar twist rearrangement 
mechanism for tris-chelate complexes. The twist 
proceeds by elongating a trigonally distorted octa- 
hedral complex along its three-fold axis, and in the 
process shortening the triangular face L-L distances, 
to form a tpr geometry. The tpr geometry then 
collapses to the trigonal geometry which is the 
enantiomer of the starting one. Thus the transition 
state geometry is the most stable one possible for the 
required symmetry and geometry type. It is of 
interest in this context to consider the mechanism 
which was proposed for the rearrangement of an 
octahedral metal polyhedron of a metal cluster and 
which results in exactly the same product (in a 
labelled atom sense) as the Bailar twist [21]. The 
metal polyhedron mechanism proceeds by breaking 
one metal-metal link and joining up the two vertices 
opposite the broken link. This mechanism was con- 
sidered favourable for the metal polyhedron because 

it involved a small loss of the attractive metal-metal 
interaction energy. An analogous mechanism in a 
metal complex would involve a smaller loss of dis- 
persion energy than the Bailar twist mechanism, 
however, in a metal complex, there is the additional 
factor (which is not relevant for a metal polyhedron) 
of the metal-ligand bond energy to be considered. 
The geometry with the vertices opposite the break 
brought close enough to have a favourable dispersion 
interaction involves significant metal-ligand bond 
strain. Thus, although the symmetry considerations 
are the same for the metal polyhedron of a transition 
metal cluster compound and for the ligand system of 
a metal complex, the same rearrangement mecha- 
nisms are unlikely to be energetically feasible in the 
two types of compound. 

A final situation where the discussions of this 
work might be helpful is the case of mixed ligand 
systems. The dispersion interactions between differ- 
ent ligands is of different magnitudes, so if metal- 
ligand bonding effects do not dominate, dispersion 
energy magnitudes could be the determining factor 
in the type of geometry observed. For example MX2- 
(diket)* compounds, where X is a halogen and M = Zr 
or Hf, adopt a cis conformation, as do some titanium 
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TABLE VII. Data for AL6 Compounds Illustrating the Predominance of Octahedral Geometries 
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Compound P (A) Geometry Comment Reference 

T’@H)tj 
CU(NH3)62+ 
106’- 
A1Fe3- 
PF6- 
IF6+ 
SbBre3- 
SbBr6- 
SbBr6 

3- Mo03F3 
2- oso2c14 

0si&j2- 
ReBqO(H20) 

Co-4N = 2.1, Cu-2N = 2.6 

2.8 
2.56 

OS-Cl = 2.38, OS-O = 1.75 
2.36 
Re-0 = 1.71, Re-Br = 0.32, Re-OH2 = 2.32 

act 
dist. act 
act 
act 
act 
act 
act 
act 
act 
act 
dist. act 
act 
dist. act 

CrFz- act 
CO(NH3)h3+ act 

different sized Ns 
charge and dispersion 
charge and dispersion 
charge and dispersion 
charge and dispersion 
charge and dispersion 
dispersion 
dispersion 

not fit, so strain 
weakest bond 

17 
18 
17 
17 
17 
17 
17 
17 
17 
17 
17 

17 

derivatives. Metal-ligand bonding arguments (such as 
the truns effect) cannot account for this behaviour, 
however if interhalogen dispersion energies are greater 
than halogendiketone interactions, then a cis geom- 
etry is favoured by dispersion energies. 

Li,O 
The final two applications we shall make are to 

two series of unusual compounds, alkali metal oxides 
and xenon compounds. Alkali metal oxides are com- 
pounds where charge interactions are expected to be 
particularly significant, since, for example, when 
bonded to an oxygen atom a lithium molecule can be 
expected to be more like Li’ than Li and the polariz- 
ability of Li+ is 0.03 8, (see Table I). Equation (3) 
then suggests that charge interactions will be the 
dominant geometry determining factor. In accord 
with this Li20, LiOH and NaOH are linear though 
their analogue water is bent. Similarly the most stable 
geometry for LisO [23] is D3,, tpl with bond length 
1.70 A and Li30+ is also tpl with bond length 1.72 A 
[24,25], despite the fact that the dispersion favoured 
geometry is a pyramid. The tpl geometry results from 
the repulsion of identical positively charged lithiums. 
In contrast to the ClFa and BrF3 systems considered 
above LiaO is not more stable in a distorted geometry 
which has a smaller charge repulsion than the sym- 
metrical structure. For the lithium oxides, where 
strong ionic bonding is operative, such a distortion 
would result in a net decrease in A-L bond strength 
which would more than offset the stabilizing effect of 
the decreased charge interactions. The effect of charge 
interactions is also seen in the most stable geometry 

for Lib0 which is tetrahedral with a bond length of 
1.77 A [24]. 

XeL, 
Compounds of Xe present an interesting study 

from the point of view of geometry since the ligands 
are invariably strongly electronegative in order to 
form a bond, and one might expect an interplay of 
charge and dispersion interactions to determine the 
geometry. Charge effects will be strongest for XeL2 
systems, which is reflected in the linear geometries 
of both XeF2 and KrFz [ 171, for which dispersion 
interactions favour very bent geometries due to their 
long bond lengths (1.98 and 1.87 A respectively) 
compared with ligand size. XeL4 will be less affected 
by charge interactions, as is illustrated by XeF4 
whose bond length is 1.95 A and which adopts the 
square planar geometry favoured by dispersion inter- 
actions [I 71. Xe04 has smaller bond lengths (1.74 A 
[17]) and larger ligand size, so it is no surprise that 
the observed geometry is tetrahedral. Xe02F2 is a 
compromise between the two limiting geometries, 
with 0-Xe bond lengths of 1.71 A, Xe-F of 1.9 A, 
OXeO bond angle of 105.7”, FXeF angle of 174.7” 
and FXeO angle of 90”. XeFs+ and XeOF4 illustrate 
the same trends. The XeFs+ geometry (where minimal 
charge interaction effects are expected) is a distorted 
sbp to enable the Fs to approach each other closely. 
XeOF4 adopts a sbp geometry with the axial ligand 
being 0, and Xe-0 1.70 A, and Xe-F 1.90 A. 
Similarly XeOh4- 1s an octahedron with bond lengths 
of 1.86, and the neutral XeF,, where one wouId 
expect little charge interaction, has a slightly 
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distorted octahedral shape to maximize F-F dis- 
persive interactions between small ligands. 

IV. Conclusions 

The geometry of AL,, systems has been studied in 
this work by examining the interactions between the 
different components of the system. The aim was to 
develop an approach to geometry determination that 
could be applied simply, and at least in principle be 
extended to give quantitative answers. The conse- 
quences of the hypothesis that interligand inter- 
actions were the dominant factors in determining the 
orientation of ligands about a central atom were 
explored. The result was a procedure for determining 
geometries. The most important factors appeared to 
usually be hard sphere repulsion and attractive dis- 
persion interactions. These interactions favour 
geometries where the ligands are as close together as 
their hard sphere radii and the constraints of the 
number of ligands allow. The different geometries 
favoured for different ligand sizes are illustrated in 
Figs. 1-6. Thus application requires an estimate of 
A-L bond lengths (a typical value is sufficient for 
determining the shape adopted) and of L hard sphere 
radii (cf. Table II), then an application of simple 
trigonometry. 

In many systems where L is charged, either 
intrinsically or due to a significant degree of electron 
transfer across a polar bond, then the observed 
geometry differs from the dispersion favoured one as 
a result of charge interactions. Repulsive interactions 
result in bond angles which are larger than those 
favoured by dispersion interactions. 

Two additional factors must be considered before 
adopting the dispersion/charge favoured .structure as 
the geometry of the system, both tend to increase the 
LAL bond angles. The first factor is relevant only for 
systems with two, or perhaps three, ligands where all 
valence shell electrons on A are nominally involved in 
bonding. In a bent geometry the A-L bond strength 
may be weaker than in a linear geometry as the most 
stable electronic configuration in a bent geometry 
leaves less than optimal electron density in the bonds. 
The second factor is relevant for systems where the 
dispersion/charge favoured LAL bond angle is less 
than 90°. This forces the electron density in the two 
A-L bonds to be very close together near A and 
interbond electron repulsion becomes a relevant con- 
sideration. 

The most attractive feature of this scheme for 
geometry determination, apart from its simplicity, 
is that it applies equally well to ground states, excited 
states, systems with odd numbers of electrons and 
charged systems. The sizes of ligands and bond 
lengths may be more difficult to determine for 
excited states, but reliable estimates can generally 
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be made. The varied applications presented in this 
work illustrate the application of these geometry 
determining principles, and suggest that the principles 
do in fact relate to the true nature of AL,, systems. It 
is envisaged that application to metal carbonyl com- 
plexes and cluster compounds will be most fruitful. 
Such work is currently in progress. 
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