

Steric Effects of Tertiary Phosphines on ¹⁹⁹Hg Chemical Shifts in [${(\eta^5 - C_5 H_5)(CO)_2(L)Mo}_2$ Hg] Complexes

JOHN D. COTTON* and ELIZABETH A. MILES

Department of Chemistry, University of Queensland, St. Lucia, Brisbane, Qld. 4067 (Australia)

(Received February 5, 1990)

A trend to increased shielding of the ¹¹⁹Sn chemical shift in a series of complexes, $[(\eta^5 - C_5 H_5)(CO) -$ (L)FeSnMe₃], with increase in the Tolman cone angle, θ [1] of L (L = CO, P(OMe)_3, PMePh_2, PPh_3, $P(CH_2Ph)_3$) has recently been observed [2]. This apparent correlation between a steric effect and an electronic property was interpreted in terms of reduced $(d-d)\pi$ bonding between the iron and tin atoms, as the cone angle is increased, arising from the distortion of ligands from the axis of a regular octahedron. The reduction in π bonding was thought to reflect into a reduction in ΔE in the paramagnetic shielding term, $\sigma^{\mathbf{p}}$. We now report a similar steric dependence on ¹⁹⁹Hg chemical shift in a series of compounds with mercury-molybdenum bonds, $[{(\eta^5 - C_5 H_5)(CO)_2(L)Mo}_2Hg], \text{ for } L = CO, PMe_2Ph,$ PEt₃, PMePh₂, PEtPh₂, P(i-Bu)₃, PPh₃ and PCy₃.

Experimental

The $[\{(\eta^5 \cdot C_5H_5)(CO)_2(L)Mo\}_2Hg]$ complexes were prepared by direct reaction between $[\{(\eta^5 \cdot C_5H_5)(CO)_3Mo\}_2Hg]$ and the appropriate phosphine in refluxing ethanol [3] or, less satisfactorily, in refluxing heptane [4]. The compounds for $L \approx PEt_3$, PEtPh₂, P(i-Bu)₃ and PCy₃ are previously unreported.

¹⁹⁹Hg (at 17.80 MHz) and ³¹P (at 40.26 MHz) NMR spectra were recorded, in saturated CDCl₃ solution, on a Jeol FX100 spectrometer. Chemical shifts are referenced to neat Me₂Hg (coaxial capillary) and to 85% H₃PO₄ (coaxial capillary). ¹H NMR spectra were measured on a Jeol PS100 spectrometer in $CDCl_3$ solution relative to internal TMS.

Results and Discussion

The $[{(\eta^5 - C_5 H_5)(CO)_2(L)Mo}_2Hg]$ compounds, on the basis of ¹H NMR studies for $L = PMe_2Ph$ and a crystallographic study of a related complex, trans- $[\{(\eta^5 - C_5 H_5)(CO)_2(AsMe_2Ph)Mo\}Hg(CN)],$ prepared from $[{(\eta^5 \cdot C_5 H_5)(CO)_2(AsMe_2Ph)Mo]_2Hg} [4]$, have structures based on a linear geometry around Hg and a trans-substituted pseudo square pyramidal geometry around Mo. The trans geometry is further supported, on the grounds of Manning's criterion [5], by the observation of small splittings in the ¹H cyclopentadienyl resonance ($\delta \simeq 5.0$ ppm, $J({}^{31}P - {}^{1}H) \sim 1$ Hz for $L = PMe_2Ph$, $PMePh_2$ and PEt_3). The ¹⁹⁹Hg spectra show the expected triplet with coupling to two chemically equivalent phosphorus atoms, and the ³¹P spectra a satellite doublet arising from mercury coupling.

The ¹⁹⁹Hg chemical shifts (Table 1 and Fig. 1) for the $[{(\eta^5-C_5H_5)(CO)_2(L)Mo]_2Hg}]$ complexes move upfield with increase in the cone angle of the tertiary phosphine. The value for L = CO (cone angle = 95°) does not fit the trend and the apparent ¹¹⁹Sn chemical shift correlation with cone angle, observed previously with this ligand in the $[(\eta^5-C_5H_5)(CO)(L)-FeSnMe_3]$ series [2], is probably fortuitous. Although the ¹⁹⁹Hg chemical shifts do not show any

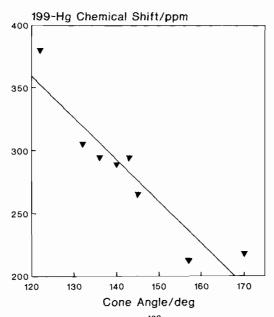


Fig. 1. Plot of variation in ¹⁹⁹Hg chemical shift with cone angle of tertiary phosphine for $[{(\eta^5-C_5H_5)(CO)_2(L)Mo}_2Hg]$ complexes.

© Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

L 	θ (°) 	ν (cm ⁻¹)	δ(¹⁹⁹ Hg) (ppm) 235.3	² <i>J</i> (³¹ P- ¹⁹⁹ Hg) (Hz)	δ(³¹ P) (ppm)		v(CO) (cm ¹)	
						1998	1969	1888
PPh ₃	145	2068.9	265.4	208	57.5	1894	1868	1818
PMePh ₂	136	2067.0	294.4	215	53.5	1890	1859	1809
PEtPh ₂	140	2066.7	289.0	212	64.3	1888	1858	1808
PMe ₂ Ph	122	2065.3	379.9	220	35.2	1886	1855	1804
P-t-BuPh ₂	157	2064.7	212.6	199	78.5			
PEt ₃	132	2061.7	305.1	210	50.6	1883	1853	1803
P(i-Bu) ₃	143	2059.7	294.4	210	49.1			
PCy ₃	170	2056.4	217.8	200	67.3	1877	1849	1798

TABLE 1. Spectral data for $[{(\eta^5 - C_5 H_5)(CO)_2(L)Mo}_2Hg]$ complexes

regular variation with the Tolman electronic parameter, ν [1] of the phosphine, we note that the presence of a significant electronic influence is suggested by observations of the ¹⁹⁹Hg chemical shift, in a related system [$\{P(C_6H_4X)_3\}_2(CO)(SnCl_3)(HgCl)Cllr$] [6], which moves to higher field as the electrondonating capacity of the substituent, in a series of substituted triphenylphosphines of essentially constant cone angle, increases ($\delta = -2077$ ppm for X = p-OCH₃, -2026 ppm for H, and -2002 ppm for p-F). We do not believe that there is a simple explanation for our observed trend but note, on the basis of a previous theoretical analysis [7], that p-orbital effects on the Hg (and Sn) atoms may be somewhat stronger contributors to the $\sigma^{\mathbf{p}}$ term than those of d-orbitals.

The values of ${}^{2}J({}^{31}P-{}^{199}Hg)$ and the ${}^{31}P$ chemical shift exhibit no trend with either the steric or the electronic property of the phosphine. The absorptions in the carbonyl region of the infrared spectra, in CHCl₃ solution, show a small, but systematic, movement to lower wavenumber as the electronic parameter of the phosphine decreases (greater basicity).

The complex, $[{(\eta^5 \cdot C_5 H_5)(CO)_2(P(i-Bu)_3 Mo)_2 Hg]},$ could not be obtained pure. In addition to the expected resonances, the ¹⁹⁹Hg spectrum showed a

doublet ($\delta = 298.8$ ppm, ${}^{2}J({}^{31}P_{-}{}^{199}Hg) = 266$ Hz) and the ${}^{31}P$ spectrum a satellite doublet ($\delta = 82.8$ ppm). The impurity is tentatively formulated as a singly-substituted species, [{($\eta^{5}-C_{5}H_{5})(CO)_{2}(P_{-}(i-Bu)_{3})Mo$ }Hg{Mo($\eta^{5}-C_{5}H_{5})(CO)_{3}$ }].

Acknowledgement

We thank the Australian Research Grants Scheme for financial support.

References

- 1 C. A. Tolman, Chem. Rev., 77 (1977) 313.
- 2 L. Carlton, G. Pattrick and N. J. Coville, *Inorg. Chim.* Acta, 160 (1989) 65.
- 3 M. J. Mays and S. M. Pearson, J. Chem. Soc. A, (1968) 2291.
- 4 G. Salem, B. W. Skelton, A. H. White and S. B. Wild, J. Chem. Soc., Dalton Trans., (1983) 2117.
- 5 A. R. Manning, J. Chem. Soc. A, (1967) 1984.
- 6 M. Kretschmer, P. S. Pregosin, P. Favre and C. W. Schlaepfer, J. Organomet. Chem., 253 (1983) 17.
- 7 H. Nakatsuji, K. Kanda, K. Endo and T. Yonezawa, J. Am. Chem. Soc., 106 (1984) 4653.