Reaction of $Mo_2(O_2CMe)_2Cl_2(dppe)$ with pyridine; structural characterizations of the products of $Mo_2Cl_2(OAc)_2Py_2$ and $MoOCl_2(dppe)(Py)$

Jhy-Der Chen, F. Albert Cotton^{*} and Seong-Joo Kang Department of Chemistry and Laboratory for Structure and Bonding, Texas A&M University, College Station, TX 77843 (USA)

(Received June 27, 1991)

Abstract

By layering a CH₂Cl₂/pyridine solution of Mo₂Cl₂(OAc)₂(dppe) with n-hexane, two different kinds of crystals were obtained, both of which were characterized by X-ray crystallography. Crystal data for Mo₂Cl₂(OAc)₂Py₂ (1): $P\bar{1}$, a=11.979(2), b=13.977(3), c=9.036(1) Å, $\alpha=103.15(1)$, $\beta=94.46(1)$, $\gamma=115.12(1)^\circ$, V=1307.5(4) Å³, Z=2. Final residuals for 1: R=0.0493, $R_w=0.0660$. Crystal data for MoOCl₂(dppe)(Py) (2): $P2_1/c$, a=11.480(2), b=17.854(2), c=15.693(2) Å, $\beta=115.51(1)^\circ$, V=2982.3(7) Å³, Z=4. Final residuals for 2: R=0.0458, $R_w=0.0769$. The molecules of 1 were found to be linked by two Cl---Mo bridges (3.018 and 3.082 Å) into infinite chains.

Introduction

Compounds of the type $Mo_2(O_2CR)_2X_2(L)_2$ where X = Cl or Br and L represents a monodentate ligand or one half of a bidentate ligand have been reported before, beginning in 1976 [1]. In some cases X-ray crystallographic structure determinations have been reported [1–5] and in other cases they have not [6]. With the sole exception of $Mo_2(O_2CCF_3)Cl_2$ - $(C_2H_5CN)_2$ [4] these compounds have all contained phosphines as the neutral ligands, L.

In this paper we report the direct conversion of a phosphine compound, $Mo_2Cl_2(O_2CCH_3)_2(dppe)$ to the pyridine compound *cis*- $Mo_2(O_2CCH_3)Cl_2(Py)_2$. The complex $MoOCl_2(dppe)(Py)$ which was obtained in the same reaction will also be reported. The preparation and structure of $Mo_2(O_2CCH_3)_2Cl_2(Py)_2$ support the proposed *cis* structure of $Mo_2Cl_2(OAc)_2(dppe)$.

Experimental

General procedures

All manipulations were carried out under an atmosphere of dry oxygen-free argon using Schlenk techniques, unless otherwise noted. Solvents were dried and deoxygenated by refluxing over the appropriate reagents before use. THF, n-hexane, ether and toluene were purified by distillation from sodium-potassium/benzophenone. Pyridine was distilled from CaH₂.

Preparations

Starting material

 $Mo_2(OAc)_4$ was prepared according to a reported procedure [7].

$Mo_2Cl_2(OAc)_2dppe$

 $(Mo)_2(OAc)_4$ (1.0 g) was placed in a flask containing a THF/toluene mixture (1:1, 50 ml), followed by the addition of Me₃SiCl (1 ml) and dppe (1.0 g). The mixture was then stirred for 20 h. The pink solid was filtered from a dark green solution, washed with THF and ether, and then dried *in vacuo*. Yield 0.78 g (45%). The red crystals of Mo₂Cl₂(OAc)₂Py₂ and green crystals of MoOCl₂(dppe)(Py) were obtained by layering a CH₂Cl₂/pyidine solution of Mo₂Cl₂(OAc)₂dppe with n-hexane.

X-ray crystallography

The structures of $Mo_2Cl_2(OAc)_2Py_2$ and $Mo-OCl_2(dppe)(Py)$ were determined by a general procedure that has been fully described elsewhere [8].

$Mo_2Cl_2(OAc)_2Py_2$ (1)

A red crystal was mounted on the top of a fiber with epoxy cement. Crystal quality was confirmed

^{*}Author to whom correspondence should be addressed.

by a rotation photograph. The unit cell constants were determined from 22 reflections with 2θ values in the range 44–52°. These were consistent with a triclinic system. The diffraction data were collected at 20 ± 1 °C on a Rigaku AFC5R diffractometer with graphite monochromated Cu K α ($\lambda \alpha = 1.54$ Å) radiation. Data reduction was carried out by standard methods with the use of well-established computational procedures; crystallographic computing was done on a local area VAX cluster, employing the VAX/VMS V4.6 computer.

The ω -2 θ collection method was used to scan a possible 4171 data points in the range of $4 < 2\theta < 120^\circ$. The structure factors were obtained after Lorentz and polarization corrections. Empirical absorption corrections based on azimuthal (Ψ) scans of reflections of Eulerian angle χ near 90° were applied to the data [9]. The crystal data are given in Table 1.

The Patterson methods program in SHELXS-86 [10] led to the location of the positions of the

molybdenum atoms. The remaining atoms were found in a series of alternating difference Fourier maps and least-squares refinements. All atoms were defined anisotropically, but hydrogen atoms were omitted from the model. The final residuals of the refinement were R = 0.0493 and $R_w = 0.0660$. Atomic positional parameters and equivalent isotropic thermal parameters are listed in Table 2.

$MoOCl_2(dppe)(Py)$ (2)

The method used to obtain the structure of this compound was similar to that for 1; the crystal data are given in Table 1. Atomic positions and equivalent isotropic thermal parameters are listed in Table 3.

Results and discussion

The red complex $Mo_2Cl_2(OAc)_2Py_2$ (1) was obtained from a simple reaction in which the dppe ligand of $Mo_2Cl_2(OAc)_2(dppe)$ was replaced by two

TABLE 1. Crystal data for Mo₂Cl₂(OAc)₂Py₂·2CH₂Cl₂ (1) and MoOCl₂(dppe)(Py) (2)

	1	2
Formula	$Mo_2Cl_2O_4N_2C_{14}H_{16} \cdot 2CH_2Cl_2$	MoOCl ₂ P ₂ NC ₃₁ H ₂₀
Formula weight	708.95	660.38
Space group	РĪ	$P2_1/c$
a (Å)	11.979(2)	11.480(2)
b (Å)	13.977(3)	17.854(2)
c (Å)	9.036(1)	15.639(2)
α, (°)	103.15(1)	90
β (°)	94.46(1)	115.51(1)
γ (°)	115.12(1)	90
V (Å ³)	1307.5(4)	2982.3(7)
Z	2	4
D_{calc} (g/cm ³)	1.801	1.471
Crystal size (mm)	$0.40 \times 0.35 \times 0.15$	$0.42 \times 0.31 \times 0.25$
$\mu(Cu K\alpha) (cm^{-1})$	140.507	65.862
Data collection instrument	Rigaku-AFC5R	Rigaku-AFC5R
Radiation monochromated	1.541838	1.541838
in incident beam (Cu Kα, Å)		
Orientation reflections: no., range (2θ)	22; 44.6 < 2θ < 52.9	25; 48.1 $< 2\theta < 52.9$
Temperature (°)	20 ± 1	20 ± 1
Scan method	2 <i>θ</i> -ω	2 0
Data collection range, 2θ (°)	$4 \leq 2\theta \leq 120$	$4 \leq 2\theta \leq 120$
No. unique data, total	3683, 2697	4263, 3831
with $F_0^2 > 3\sigma(F_0^2)$,	
No. parameters refined	289	343
Transmission factors: max., min.	1.00, 0.47	1.00, 0.56
R ^a	0.0493	0.0458
R _w ^b	0.0660	0.0769
Quality-of-fit indicator ^c	1.451	1.656
Largest shift/e.s.d., final cycle	0.31	0.03
Largest peak (e/Å ³)	0.629	0.744

 ${}^{a}R = \sum ||F_{0}| - |F_{c}||/\sum |F_{0}|. \quad {}^{b}R_{w} = [\sum w(|F_{0}| - |F_{c}|)^{2}/\sum w|F_{0}|^{2}]^{1/2}; \ w = 1/\sigma^{2}(|F_{0}|). \quad {}^{c}\text{Quality-of-fit} = [\sum w(|F_{0}| - |F_{c}|)^{2}/(N_{\text{observed}} - N_{\text{parameters}})]^{1/2}.$

TABLE 2. Positional and isotropic equivalent thermal parameters $(Å^2)$ and their e.s.d.s for Mo_2Cl_2 -(OAc)_2Py_2·2CH_2Cl_2

TABLE 3.	Positional and iso	ptropic equivalent thermal
parameters	$(Å^2)$ and their e.s.	d.s for MoOCl ₂ (dppe)(Py)

Atom	<i>x</i>	у	<i>z</i>	<i>B</i> (Å ²)
Mo(1)	0.18870(6)	0.04516(5)	-0.00147(7)	3.76(2)
Mo(2)	0.36037(7)	0.03811(5)	0.05622(7)	3.94(2)
Cl(1)	0.0270(2)	0.8973(2)	0.0747(2)	4.40(5)
Cl(2)	0.6229(2)	0.0783(2)	0.1791(2)	4.85(6)
O(1)	0.2195(5)	0.1518(4)	0.2202(6)	5.2(2)
O(2)	0.7163(6)	0.8132(4)	0.0755(6)	5.2(2)
O(3)	0.5396(6)	0.8206(5)	0.0126(6)	5.5(2)
O(4)	0.3961(6)	0.1442(5)	0.2825(6)	5.4(2)
N(1)	0.8801(7)	0.0551(5)	0.2499(7)	4.4(2)
N(2)	0.3075(7)	0.9001(5)	0.1590(7)	4.6(2)
C(1)	0.3181(9)	0.1784(7)	0.3169(9)	4.8(3)
C(2)	0.343(1)	0.2527(9)	0.480(1)	7.0(3)
C(3)	0.5976(9)	0.7729(8)	0.061(1)	5.2(3)
C(4)	0.529(1)	0.6692(8)	0.105(1)	7.0(3)
C(5)	0.861(1)	0.0045(8)	0.360(1)	6.4(3)
C(6)	0.901(1)	0.0599(9)	0.516(1)	6.7(3)
C(7)	0.033(1)	0.8259(9)	0.439(1)	6.6(3)
C(8)	-0.014(1)	0.2283(9)	0.445(1)	6.6(3)
C(9)	0.9426(9)	0.1666(8)	0.294(1)	5.6(3)
C(10)	0.357(1)	0.9198(8)	0.309(1)	6.1(3)
C(11)	0.333(1)	0.8347(9)	0.379(1)	7.2(4)
C(12)	0.254(1)	0.7276(8)	0.290(1)	7.2(3)
C(13)	0.204(1)	0.7056(8)	0.136(1)	6.9(3)
C(14)	0.2334(9)	0.7931(8)	0.076(1)	5.5(3)
Cl(3)	0.8468(6)	0.4190(5)	0.3432(7)	16.5(2)
Cl(4)	0.6292(6)	0.4524(4)	0.3243(7)	18.5(3)
C(15)	0.693(1)	0.363(1)	0.288(2)	11.7(6)
CI(5)	0.238(2)	0.4458(9)	0.274(1)	25.5(7)
Cl(6)	0.8207(9)	0.5812(6)	0.055(1)	12.0(3)
Cl(7)	0.094(1)	0.4179(6)	0.155(2)	17.0(5)
Cl(8)	0.342(1)	-0.5484(7)	0.240(1)	13.2(3)
C(16)	0.205(2)	0.370(1)	0.106(2)	12.5(6)

Anisotropically refined atoms are given in the form of the equivalent isotropic displacement parameter defined as: $(4/3)[a^2\beta_{11}+b^2\beta_{22}+c^2\beta_{33}+ab(\cos\gamma)\beta_{12}+ac(\cos\beta)\beta_{13}+bc-(\cos\alpha)\beta_{23}].$

pyridine ligands. The green complex Mo- $OCl_2(dppe)(Py)$ (2) was obtained as a byproduct resulting from oxidation of $Mo_2Cl_2(OAc)_2(dppe)$. The source of oxygen was most likely air. In the previously reported preparation [6] of Mo₂Cl₂(OAc)₂(dppe), the method was different, starting with Mo₂Cl₂(OAc)₂(PPh₂)₂. The present method gave a yield of only 45% but has the advantage of proceeding directly from Mo₂(OAc)₄. The compound was previously described as purple whereas our product appeared pink, perhaps because of different particle sizes.

$Mo_2Cl_2(OAc)_2(Py)_2$ (1)

Crystals of this complex conform to the space group $P\overline{1}$ with two molecules in the unit cell. Figure 1 shows the ORTEP diagrams of these two molecules

Atom	<i>x</i>	У	z	B (Å ²)
Mo	0.17798(3)	0.21198(2)	0.17539(2)	2.467(8)
Cl(1)	0.2693(1)	0.13122(6)	0.31403(8)	3.39(2)
Cl(2)	0.3213(1)	0.15427(8)	0.11014(8)	4.01(3)
P(1)	0.0594(1)	0.24952(6)	0.27295(8)	2.54(2)
P(2)	0.3283(1)	0.30564(7)	0.27600(8)	2.67(2)
0	0.1056(3)	0.2781(2)	0.0974(2)	3.57(8)
Ν	0.0403(4)	0.1229(2)	0.1042(3)	3.26(9)
C(1)	-0.0632(4)	0.3211(3)	0.2294(3)	3.0(1)
C(2)	-0.1667(5)	0.3213(3)	0.2552(4)	3.9(1)
C(3)	-0.2553(5)	0.3768(3)	0.2244(4)	4.6(1)
C(4)	-0.2430(5)	0.4335(3)	0.1694(4)	4.4(1)
C(5)	-0.1380(5)	0.4365(3)	0.1467(4)	4.3(1)
C(6)	-0.0487(5)	0.3792(3)	0.1749(4)	3.6(1)
C(7)	-0.0173(4)	0.1748(3)	0.3108(3)	3.0(1)
C(8)	0.0229(5)	0.1522(3)	0.4014(3)	3.8(1)
C(9)	-0.0362(5)	0.0906(3)	0.4251(4)	4.7(1)
C(10)	-0.1328(5)	0.0540(3)	0.3595(4)	4.8(1)
C(11)	-0.1734(5)	0.0761(3)	0.2685(4)	4.5(1)
C(12)	-0.1158(5)	0.1371(3)	0.2450(4)	4.0(1)
C(13)	0.1710(5)	0.2946(3)	0.3760(3)	3.1(1)
C(14)	0.2489(4)	0.3516(3)	0.3463(3)	3.3(1)
C(15)	0.3759(4)	0.3830(3)	0.2191(4)	3.3(1)
C(16)	0.3518(5)	0.3782(3)	0.1253(4)	4.1(1)
C(17)	0.3866(6)	0.4368(4)	0.0788(4)	5.4(2)
C(18)	0.4452(5)	0.5002(3)	0.1279(5)	5.4(2)
C(19)	0.4731(5)	0.5047(3)	0.2235(5)	5.3(2)
C(20)	0.4378(5)	0.4453(3)	0.2683(4)	4.2(1)
C(21)	0.4764(4)	0.2713(3)	0.3598(4)	3.2(1)
C(22)	0.5562(5)	0.2367(3)	0.3237(4)	4.5(1)
C(23)	0.6693(6)	0.2072(3)	0.3840(6)	5.8(2)
C(24)	0.6987(7)	0.2112(4)	0.4784(6)	6.4(2)
C(25)	0.6174(7)	0.2463(5)	0.5130(5)	7.2(2)
C(26)	0.5046(6)	0.2745(4)	0.4532(4)	5.2(2)
C(27)	0.0500(5)	0.0512(3)	0.1365(4)	4.2(1)
C(28)	-0.0427(6)	-0.0006(3)	0.0972(4)	5.2(1)
C(29)	-0.1502(6)	0.0184(4)	0.0250(4)	5.8(1)
C(30)	-0.1624(6)	0.0905(4)	-0.0090(5)	5.8(2)
C(31)	-0.0631(5)	0.1422(3)	0.0312(4)	4.4(1)

Anisotropically refined atoms are given in the form of the equivalent isotropic displacement parameter defined as: $(4/3)[a^2\beta_{11}+b^2\beta_{22}+c^2\beta_{33}+ab(\cos\gamma)\beta_{12}+ac(\cos\beta)\beta_{13}+bc-(\cos\alpha)\beta_{23}].$

which are interrelated by an inversion center. Table 4 lists some selected bond distances and angles for 1. The molecules of 1 have the *cis* arrangement of the two carboxylate groups.

The molecules of 1 show that the Mo-O bond length is a function of the *trans* ligand within the same molecule. The average Mo-O bond distance *trans* to Cl is about 0.1 Å longer than the average Mo-O distance *trans* to the pyridine ligand, suggesting that the chloride atom lies higher in a *trans*-influence series for the Mo(II) complexes than the pyridine ligand. Combining the series, $Et_3P > Me_3CCO_2 \ge Cl$, which was found from two isomers of

Fig. 1. ORTEP drawing for $Mo_2Cl_2(OAc)_2Py_2$, showing two molecules which are interrelated by an inversion center. The dashed lines represent the weak interactions between the molecules.

 $Mo_2(O_2CCMe_3)_2Cl_2(PEt_3)_2$ [2], the series now can be written as $Et_3P > Me_3CCO_2 \ge Cl > Py$.

The crystal packing that leads to the formation of infinite chains is shown in Scheme 1. The molecules are linked together by weak interactions through two chlorine atoms (Mo---Cl(1)=3.082 Å and Mo---Cl(2)=3.018 Å). The molecules of $Mo_2(O_2CCF_3)_2(NCC_2H_5)_2Cl_2 \cdot Mo_2(O_2CCF_3)_3(C_2H_5-CN)Cl$ [4] were also found to be linked by three Cl---Mo bridges (2.894–3.005 Å) and one O---Mo bridge into finite chains in which the two dinuclear units alternate.

Due to the insolubility of $Mo_2Cl_2(OAc)_2(dppe)$ in most solvents, the crystal structure was not determined, but a *cis* arrangement of the acetate groups was proposed on indirect evidence. The preparation of $Mo_2Cl_2(OAc)_2Py_2$ by direct ligand replacement provides support for the proposed structure of $Mo_2Cl_2(OAc)_2(dppe)$ given below. This kind of structure has also been proposed by Bakir and Walton for complexes of the type $Mo_2X_2(OAc)_2(PP)$ (X = Cl, Br, I; PP=diphosphine ligands) [6] and was considered to be most stable when the overall rotation geometry remains eclipsed, as seen in the cases with quadruply bonded Mo_2^{4+} species.

$Mo_2OCl_2(dppe)(Py)$ (2)

The crystals of 2 conform to the space group $P2_1/c$ with four molecules in the unit cell. Figure 2 shows the ORTEP diagram of this complex. The five ligands coordinated to the Mo atom form a highly distorted octahedron. Table 5 lists some selected bond distances and angles for 2. The two Cl atoms are *cis* to each other and the oxygen atom

TABLE 4. Selected bond distances (Å) and angles (°) for $Mo_2Cl_2(OAc)_2Py_2 \cdot 2CH_2Cl_2$

Bond lengths (Å)	
Mo(1) - Mo(2)	2.131(1)
Mo(1) - Cl(1)	2.440(2)
Mo(1) - O(1)	2.105(5)
Mo(1) - O(2)	2.114(6)
Mo(1) - N(1)	2.232(6)
Mo(2) - Cl(2)	2.445(2)
Mo(2) - O(3)	2.094(6)
Mo(2) - O(4)	2.123(5)
Mo(2) - N(2)	2.203(8)
Bond angles (°)	
Mo(2) - Mo(1) - Cl(1)	106.42(7)
Mo(2) - Mo(1) - O(1)	91.2(2)
Mo(2) - Mo(1) - O(2)	90.9(2)
Mo(2) - Mo(1) - N(1)	102.5(2)
Cl(1) - Mo(1) - O(1)	88.6(2)
Cl(1) - Mo(1) - O(2)	162.4(2)
Cl(1) - Mo(1) - N(1)	90.6(2)
O(1) - Mo(1) - O(2)	87.9(2)
O(1) - Mo(1) - N(1)	165.9(3)
O(2) - Mo(1) - N(1)	88.6(2)
Mo(1) - Mo(2) - Cl(2)	105.25(7)
Mo(1) - Mo(2) - O(3)	91.0(2)
Mo(1) - Mo(2) - O(4)	90.6(2)
Mo(1) - Mo(2) - N(2)	104.3(2)
Cl(2) - Mo(2) - O(3)	90.6(2)
Cl(2) - Mo(2) - O(4)	164.1(2)
Cl(2) - Mo(2) - N(2)	89.4(2)
O(3) - Mo(2) - O(4)	87.7(2)
O(3) - Mo(2) - N(2)	164.2(3)
O(4) - Mo(2) - N(2)	87.9(2)
Mo(1) - O(1) - C(1)	118.1(6)
Mo(1) - O(2) - C(3)	118.1(7)
Mo(2) - O(3) - C(3)	119.3(5)
Mo(2) - O(4) - C(1)	118.3(5)
Mo(1) - N(1) - C(5)	119.5(5)
Mo(1) - N(1) - C(9)	122.5(6)
Mo(2) - N(2) - C(10)	119.5(5)
Mo(2) - N(2) - C(14)	123.1(6)

Numbers in parentheses are e.s.d.s in the least significant digits.

The two Mo–Cl bond distances, Mo–Cl(1) = 2.492(1)Å and Mo–Cl(2) = 2.458(1) Å, differ significantly, due to the different *trans* influences of P and O (O>P). The two different Mo–P distances of 2.481(1)and 2.502(1) Å indicate that the *trans* influences of Py and Cl are in the order that Py>Cl.

Complex 2 allows some interesting comparisons with $MoOCl_2(PMe_2Ph)_3$ [11]. First, the average of the P-Mo-P angles of the *cis* phosphorus atoms in $MoOCl_2(PMe_2Ph)_3$ is 94.1°, while in 2 the angle is only 80.8° due to the constraint imposed by the fivemembered ring. Second, both the meridional planes of 2 are occupied by three types of atoms, while in $MoOCl_2(PMe_2Ph)_3$ one plane is occupied by three types of atoms and the other only by two types. So

$$MO(1'') = MO(2'') \xrightarrow{3.018} - -CI(2)$$

$$| \\ CI(2'') \xrightarrow{3.018} - --MO(2) = MO(1) \xrightarrow{3.082} - CI(1')$$

$$| \\ CI(1) \xrightarrow{3.082} - MO(1') = MO(2')$$

Scheme 1.

Fig. 2. ORTEP drawing for MoOCl₂(dppe)(Py).

far as we know, complex 2 is the only complex of the type $MoOX_2L_3$ (X=halogen atom and L=monodentate ligand) in which such a configuration has been structurally characterized.

Supplementary material

Full tables of bond distances, bond angles anisotropic and thermal parameters (10 pages)l; and two listings of observed and calculated structure factors (35 pages) are available from author F.A.C. upon request.

TABLE 5. Selected bond distances (Å) and angles (°) for MoOCl₂(dppe)(Py)

$\begin{array}{llllllllllllllllllllllllllllllllllll$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Distances (Å)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Mo-Cl(1)	2.492(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Mo-Cl(2)	2.458(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Mo-P(1)	2.481(1)
Mo-N2.231(4)Angles (°) $Cl(1) - Mo - Cl(2)$ $89.24(4)$ $Cl(1) - Mo - P(1)$ $76.81(4)$ $Cl(1) - Mo - P(1)$ $76.81(4)$ $Cl(1) - Mo - P(2)$ $82.33(4)$ $Cl(1) - Mo - P(2)$ $82.33(4)$ $Cl(1) - Mo - P(2)$ $82.33(4)$ $Cl(1) - Mo - P(2)$ $91.0(1)$ $Cl(2) - Mo - P(1)$ $166.04(4)$ $Cl(2) - Mo - P(2)$ $97.40(4)$ $Cl(2) - Mo - P(2)$ $97.40(4)$ $Cl(2) - Mo - P(2)$ $80.81(4)$ $P(1) - Mo - P(2)$ $80.81(4)$ $P(1) - Mo - P(2)$ $80.81(4)$ $P(1) - Mo - N$ $92.9(1)$ $P(2) - Mo - N$ $91.1(1)$ $P(2) - Mo - N$ $91.8(1)$ $P(2) - Mo - N$ $91.8(1)$ $P(2) - Mo - N$ $93.8(1)$ $Mo - P(1) - C(1)$ $118.6(2)$ $Mo - P(1) - C(7)$ $116.3(2)$ $Mo - P(1) - C(13)$ $107.1(2)$ $Mo - P(2) - C(14)$ $107.0(1)$ $Mo - P(2) - C(15)$ $117.3(2)$ $Mo - P(2) - C(21)$ $118.1(2)$ $C(14) - P(2) - C(15)$ $104.7(2)$ $Mo - N - C(27)$ $122.5(3)$	Mo-P(2)	2.502(1)
Angles (°)End(t) $Cl(1) - Mo - Cl(2)$ $89.24(4)$ $Cl(1) - Mo - P(1)$ $76.81(4)$ $Cl(1) - Mo - P(2)$ $82.33(4)$ $Cl(1) - Mo - P(2)$ $82.33(4)$ $Cl(1) - Mo - P(2)$ $82.33(4)$ $Cl(1) - Mo - P(2)$ $91.0(1)$ $Cl(2) - Mo - P(1)$ $166.04(4)$ $Cl(2) - Mo - P(2)$ $97.40(4)$ $Cl(2) - Mo - P(2)$ $97.40(4)$ $Cl(2) - Mo - P(2)$ $80.81(4)$ $P(1) - Mo - N$ $92.9(1)$ $P(2) - Mo - N$ $91.8(1)$ $P(2) - Mo - N$ $91.8(1)$ $P(2) - Mo - N$ $93.8(1)$ $Mo - P(1) - C(1)$ $118.6(2)$ $Mo - P(1) - C(7)$ $116.3(2)$ $Mo - P(1) - C(13)$ $107.1(2)$ $Mo - P(2) - C(14)$ $107.0(1)$ $Mo - P(2) - C(15)$ $117.3(2)$ $Mo - P(2) - C(21)$ $118.1(2)$ $C(14) - P(2) - C(15)$ $104.7(2)$ $Mo - N - C(27)$ $122.5(3)$	Mo-O	1.682(3)
$\begin{array}{cccc} C(1) - Mo - Cl(2) & 89.24(4) \\ Cl(1) - Mo - P(1) & 76.81(4) \\ Cl(1) - Mo - P(2) & 82.33(4) \\ Cl(1) - Mo - O & 167.3(1) \\ Cl(1) - Mo - O & 167.3(1) \\ Cl(2) - Mo - P(1) & 166.04(4) \\ Cl(2) - Mo - P(2) & 97.40(4) \\ Cl(2) - Mo - P(2) & 97.40(4) \\ Cl(2) - Mo - O & 102.8(2) \\ Cl(2) - Mo - O & 102.8(2) \\ Cl(2) - Mo - N & 87.3(1) \\ P(1) - Mo - P(2) & 80.81(4) \\ P(1) - Mo - P(2) & 80.81(4) \\ P(1) - Mo - O & 91.1(1) \\ P(1) - Mo - N & 92.9(1) \\ P(2) - Mo - O & 91.8(1) \\ P(2) - Mo - N & 171.7(1) \\ O - Mo - N & 93.8(1) \\ Mo - P(1) - C(1) & 118.6(2) \\ Mo - P(1) - C(7) & 116.3(2) \\ Mo - P(2) - C(15) & 107.1(2) \\ Mo - P(2) - C(15) & 117.3(2) \\ Mo - P(2) - C(15) & 104.7(2) \\ Mo - N - C(27) & 122.5(3) \\ \end{array}$	Mo-N	2.231(4)
$\begin{array}{cccc} C(1) - Mo - Cl(2) & 89.24(4) \\ Cl(1) - Mo - P(1) & 76.81(4) \\ Cl(1) - Mo - P(2) & 82.33(4) \\ Cl(1) - Mo - O & 167.3(1) \\ Cl(1) - Mo - O & 167.3(1) \\ Cl(2) - Mo - P(1) & 166.04(4) \\ Cl(2) - Mo - P(2) & 97.40(4) \\ Cl(2) - Mo - P(2) & 97.40(4) \\ Cl(2) - Mo - O & 102.8(2) \\ Cl(2) - Mo - O & 102.8(2) \\ Cl(2) - Mo - N & 87.3(1) \\ P(1) - Mo - P(2) & 80.81(4) \\ P(1) - Mo - P(2) & 80.81(4) \\ P(1) - Mo - O & 91.1(1) \\ P(1) - Mo - N & 92.9(1) \\ P(2) - Mo - O & 91.8(1) \\ P(2) - Mo - N & 171.7(1) \\ O - Mo - N & 93.8(1) \\ Mo - P(1) - C(1) & 118.6(2) \\ Mo - P(1) - C(7) & 116.3(2) \\ Mo - P(2) - C(15) & 107.1(2) \\ Mo - P(2) - C(15) & 117.3(2) \\ Mo - P(2) - C(15) & 104.7(2) \\ Mo - N - C(27) & 122.5(3) \\ \end{array}$	Angles (°)	
$\begin{array}{cccc} Cl(1)-Mo-P(1) & 76.81(4) \\ Cl(1)-Mo-P(2) & 82.33(4) \\ Cl(1)-Mo-O & 167.3(1) \\ Cl(1)-Mo-N & 91.0(1) \\ Cl(2)-Mo-P(1) & 166.04(4) \\ Cl(2)-Mo-P(2) & 97.40(4) \\ Cl(2)-Mo-O & 102.8(2) \\ Cl(2)-Mo-O & 102.8(2) \\ Cl(2)-Mo-N & 87.3(1) \\ P(1)-Mo-P(2) & 80.81(4) \\ P(1)-Mo-P(2) & 80.81(4) \\ P(1)-Mo-O & 91.1(1) \\ P(1)-Mo-N & 92.9(1) \\ P(2)-Mo-O & 91.8(1) \\ P(2)-Mo-N & 171.7(1) \\ O-Mo-N & 93.8(1) \\ Mo-P(1)-C(1) & 118.6(2) \\ Mo-P(1)-C(7) & 116.3(2) \\ Mo-P(2)-C(13) & 107.1(2) \\ Mo-P(2)-C(15) & 117.3(2) \\ Mo-P(2)-C(21) & 118.1(2) \\ C(14)-P(2)-C(15) & 104.7(2) \\ Mo-N-C(27) & 122.5(3) \\ \end{array}$	Cl(1) - Mo - Cl(2)	89.24(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Cl(1) - Mo - P(1)	76.81(4)
$\begin{array}{cccc} C(1)-Mo-N & 91.0(1) \\ C(2)-Mo-P(1) & 166.04(4) \\ C(2)-Mo-P(2) & 97.40(4) \\ C(2)-Mo-O & 102.8(2) \\ C(2)-Mo-N & 87.3(1) \\ P(1)-Mo-P(2) & 80.81(4) \\ P(1)-Mo-P(2) & 80.81(4) \\ P(1)-Mo-N & 92.9(1) \\ P(2)-Mo-N & 91.8(1) \\ P(2)-Mo-N & 171.7(1) \\ O-Mo-N & 93.8(1) \\ Mo-P(1)-C(1) & 118.6(2) \\ Mo-P(1)-C(7) & 116.3(2) \\ Mo-P(1)-C(13) & 107.1(2) \\ Mo-P(2)-C(14) & 107.0(1) \\ Mo-P(2)-C(15) & 117.3(2) \\ Mo-P(2)-C(21) & 118.1(2) \\ C(14)-P(2)-C(15) & 104.7(2) \\ Mo-N-C(27) & 122.5(3) \\ \end{array}$	Cl(1) - Mo - P(2)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Cl(1)-Mo-O	167.3(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Cl(1)-Mo-N	91.0(1)
$\begin{array}{cccc} C(2)-Mo-O & 102.8(2) \\ C(2)-Mo-N & 87.3(1) \\ P(1)-Mo-P(2) & 80.81(4) \\ P(1)-Mo-O & 91.1(1) \\ P(1)-Mo-N & 92.9(1) \\ P(2)-Mo-O & 91.8(1) \\ P(2)-Mo-N & 171.7(1) \\ O-Mo-N & 93.8(1) \\ Mo-P(1)-C(1) & 118.6(2) \\ Mo-P(1)-C(7) & 116.3(2) \\ Mo-P(1)-C(13) & 107.1(2) \\ Mo-P(2)-C(14) & 107.0(1) \\ Mo-P(2)-C(15) & 117.3(2) \\ Mo-P(2)-C(21) & 118.1(2) \\ C(14)-P(2)-C(15) & 104.7(2) \\ Mo-N-C(27) & 122.5(3) \\ \end{array}$	Cl(2) - Mo - P(1)	166.04(4)
$\begin{array}{cccc} Cl(2)-Mo-N & 87.3(1) \\ P(1)-Mo-P(2) & 80.81(4) \\ P(1)-Mo-O & 91.1(1) \\ P(1)-Mo-N & 92.9(1) \\ P(2)-Mo-N & 91.8(1) \\ P(2)-Mo-N & 171.7(1) \\ O-Mo-N & 93.8(1) \\ Mo-P(1)-C(1) & 118.6(2) \\ Mo-P(1)-C(7) & 116.3(2) \\ Mo-P(1)-C(13) & 107.1(2) \\ Mo-P(2)-C(14) & 107.0(1) \\ Mo-P(2)-C(15) & 117.3(2) \\ Mo-P(2)-C(21) & 118.1(2) \\ C(14)-P(2)-C(15) & 104.7(2) \\ Mo-N-C(27) & 122.5(3) \\ \end{array}$	Cl(2) - Mo - P(2)	97.40(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Cl(2)-Mo-O	102.8(2)
$\begin{array}{cccc} P(1)-Mo-O & 91.1(1) \\ P(1)-Mo-N & 92.9(1) \\ P(2)-Mo-O & 91.8(1) \\ P(2)-Mo-N & 171.7(1) \\ O-Mo-N & 93.8(1) \\ Mo-P(1)-C(1) & 118.6(2) \\ Mo-P(1)-C(7) & 116.3(2) \\ Mo-P(1)-C(13) & 107.1(2) \\ Mo-P(2)-C(14) & 107.0(1) \\ Mo-P(2)-C(15) & 117.3(2) \\ Mo-P(2)-C(21) & 118.1(2) \\ C(14)-P(2)-C(15) & 104.7(2) \\ Mo-N-C(27) & 122.5(3) \\ \end{array}$	Cl(2)-Mo-N	87.3(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P(1) - Mo - P(2)	80.81(4)
$\begin{array}{cccc} P(2)-Mo-O & 91.8(1) \\ P(2)-Mo-N & 171.7(1) \\ O-Mo-N & 93.8(1) \\ Mo-P(1)-C(1) & 118.6(2) \\ Mo-P(1)-C(7) & 116.3(2) \\ Mo-P(1)-C(13) & 107.1(2) \\ Mo-P(2)-C(14) & 107.0(1) \\ Mo-P(2)-C(15) & 117.3(2) \\ Mo-P(2)-C(21) & 118.1(2) \\ C(14)-P(2)-C(15) & 104.7(2) \\ Mo-N-C(27) & 122.5(3) \\ \end{array}$	P(1)-Mo-O	91.1(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P(1)-Mo-N	92.9(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P(2)-Mo-O	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P(2)-Mo-N	171.7(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O-Mo-N	93.8(1)
$\begin{array}{ll} Mo - P(1) - C(13) & 107.1(2) \\ Mo - P(2) - C(14) & 107.0(1) \\ Mo - P(2) - C(15) & 117.3(2) \\ Mo - P(2) - C(21) & 118.1(2) \\ C(14) - P(2) - C(15) & 104.7(2) \\ Mo - N - C(27) & 122.5(3) \end{array}$	Mo - P(1) - C(1)	118.6(2)
$\begin{array}{ll} Mo - P(2) - C(14) & 107.0(1) \\ Mo - P(2) - C(15) & 117.3(2) \\ Mo - P(2) - C(21) & 118.1(2) \\ C(14) - P(2) - C(15) & 104.7(2) \\ Mo - N - C(27) & 122.5(3) \end{array}$	Mo - P(1) - C(7)	
$\begin{array}{ll} Mo - P(2) - C(15) & 117.3(2) \\ Mo - P(2) - C(21) & 118.1(2) \\ C(14) - P(2) - C(15) & 104.7(2) \\ Mo - N - C(27) & 122.5(3) \end{array}$		107.1(2)
$\begin{array}{ll} Mo - P(2) - C(21) & 118.1(2) \\ C(14) - P(2) - C(15) & 104.7(2) \\ Mo - N - C(27) & 122.5(3) \end{array}$	Mo - P(2) - C(14)	
$\begin{array}{c} C(14) - P(2) - C(15) & 104.7(2) \\ Mo - N - C(27) & 122.5(3) \end{array}$		117.3(2)
Mo-N-C(27) 122.5(3)	Mo - P(2) - C(21)	118.1(2)
Mo-N-C(31) 118.7(3)		
	Mo-N-C(31)	118.7(3)

Numbers in parentheses are e.s.d.s in the least significant digits.

Acknowledgement

We thank the National Science Foundation for support.

References

 J. A. Potenza, R. J. Johnson and J. San Filippo, Jr., Inorg. Chem., 15 (1976) 2215.

- ² J. D. Arenivar, V. V. Mainz, H. Ruben and R. A. Anderson, *Inorg. Chem.*, 21 (1982) 2649.
- 3 M. L. H. Green and G. Parkin, J. Chem. Soc., Dalton Trans., (1982) 2519.
- 4 P. Agaskar and F. A. Cotton, *Inorg. Chim. Acta, 83* (1984) 33.
- 5 F. A. Cotton and G. L. Powell, *Polyhedron*, 4 (1985) 1669.
- 6 M. Bakir and R. A. Walton, Polyhedron, 7 (1988) 1279.
- 7 A. B. Brignole and F. A. Cotton, Inorg. Synth., 13 (1972) 81.
- 8 (a) A. Bino, F. A. Cotton and P. E. Fanwick, *Inorg. Chem.*, 18 (1979) 3558; (b) F. A. Cotton, B. A. Frenz, G. Deganello and A. Shacer, *J. Organomet. Chem.*, 50 (1973) 227.
- (1973) 227.
 9 A. C. T. North, D. C. Phillips and F. S. Mathews, Acta Crystallogr., Sect. A, 24 (1968) 351.
 10 G. M. Sheldrick, SHELXS-86, Institut für Anorganische
- 10 G. M. Sheldrick, SHELXS-86, Institut für Anorganische Chemie der Universität Göttingen, FRG, 1986.
- 11 L. Manojlovic-Muir, J. Chem. Soc. A, (1971) 2796.