Reaction of $Mo_{2}(O_{2}CMe)_{2}Cl_{2}(dppe)$ with pyridine; structural characterizations of the products of $Mo_2Cl_2(OAc)_2Py_2$ and $MoOCl₂(dppe)(Py)$

Jhy-Der Chen, F. Albert Cotton* and Seong-Joo Kang *Department of Chembhy and Laborarory for Strucrure and Bonding, Texas A&M University, College Starion, TX 77843 (USA)*

(Received June 27, 1991)

Abstract

By layering a CH₂Cl₂/pyridine solution of Mo₂Cl₂(OAc)₂(dppe) with n-hexane, two different kinds of crystals were obtained, both of which were characterized by X-ray crystallography. Crystal data for Mo₂Cl₂(OAc)₂Py₂ (1): *P*₁, *a*=11.979(2), *b*=13.977(3), *c*=9.036(1) Å, *a*=103.15(1), *β*=94.46(1), $\gamma = 115.12(1)$, $V = 1307.5(4)$ Å³, Z = 2. Final residuals for **1:** $R = 0.0493$, $R_w = 0.0660$. Crystal data for MoOCl₂(dppe)(Py) (2): $P2_1/c$, $a = 11.480(2)$, $b = 17.854(2)$, $c = 15.693(2)$ Å, $\beta = 115.51(1)$ °, $V = 2982.3(7)$ \AA^3 , Z=4. Final residuals for 2: $R = 0.0458$, $R_v = 0.0769$. The molecules of 1 were found to be linked by two Cl---Mo bridges $(3.018$ and 3.082 Å) into infinite chains.

Introduction

Compounds of the type $Mo_{2}(O_{2}CR)_{2}X_{2}(L)_{2}$ where $X = Cl$ or Br and L represents a monodentate ligand or one half of a bidentate ligand have been reported before, beginning in 1976 [l]. In some cases X-ray crystallographic structure determinations have been reported [l-5] and in other cases they have not [6]. With the sole exception of $Mo_{2}(O_{2}CCF_{3})Cl_{2}$ - $(C_2H_5CN)_2$ [4] these compounds have all contained phosphines as the neutral ligands, L.

In this paper we report the direct conversion of a phosphine compound, $Mo₂Cl₂(O₂ CCH₃)₂(dppe)$ to the pyridine compound $cis-Mo_2(O_2CCH_3)Cl_2(Py)_2$. The complex $MoOCl₂(dppe)(Py)$ which was obtained in the same reaction will also be reported. The preparation and structure of $Mo_{2}(O_{2}CCH_{3})_{2}Cl_{2}(Py)_{2}$ support the proposed *cis* structure of $Mo₂Cl₂(OAc)₂(dppe).$

Experimental

General procedures

All manipulations were carried out under an atmosphere of dry oxygen-free argon using Schlenk techniques, unless otherwise noted. Solvents were dried and deoxygenated by refluxing over the appropriate reagents before use. THF, n-hexane, ether and toluene were purified by distillation from sodium-potassium/benzophenone. Pyridine was distilled from $CaH₂$.

Preparations

Starting material

 $Mo₂(OAc)₄$ was prepared according to a reported procedure [7].

Mo,Ci,(OAc),dppe

 $(Mo)₂(OAc)₄(1.0g)$ was placed in a flask containing a THF/toluene mixture (l:l, 50 ml), followed by the addition of Me₃SiCl (1 ml) and dppe (1.0 g) . The mixture was then stirred for 20 h. The pink solid was filtered from a dark green solution, washed with THF and ether, and then dried *in uacuo.* Yield 0.78 g (45%). The red crystals of $Mo₂Cl₂(OAc)₂Py₂$ and green crystals of MoOClz(dppe)(Py) were obtained by layering a $CH₂Cl₂/p$ vidine solution of $Mo₂Cl₂(OAc)₂dppe with n-hexane.$

X-ray crystallography

The structures of $Mo₂Cl₂(OAc)₂Py₂$ and Mo- $\text{OCl}_2(\text{dppe})(\text{Py})$ were determined by a general procedure that has been fully described elsewhere [8].

$Mo_2Cl_2(OAC)_2Py_2(1)$

A red crystal was mounted on the top of a fiber with epoxy cement. Crystal quality was confirmed

^{*}Author to whom correspondence should be addressed.

by a rotation photograph. The unit cell constants were determined from 22 reflections with 2θ values in the range 44-52". These were consistent with a triclinic system. The diffraction data were collected at 20 ± 1 °C on a Rigaku AFC5R diffractometer with graphite monochromated Cu K α ($\lambda \alpha$ = 1.54 Å) radiation. Data reduction was carried out by standard methods with the use of well-established computational procedures; crystallographic computing was done on a local area VAX cluster, employing the VAX/VMS V4.6 computer.

The ω -2 θ collection method was used to scan a possible 4171 data points in the range of $4 < 2\theta < 120^{\circ}$. The structure factors were obtained after Lorentz and polarization corrections. Empirical absorption corrections based on azimuthal (Ψ) scans of reflections of Eulerian angle χ near 90 \degree were applied to the data [9]. The crystal data are given in Table 1.

The Patterson methods program in SHELXS-86 [10] led to the location of the positions of the

molybdenum atoms. The remaining atoms were found in a series of alternating difference Fourier maps and least-squares refinements. All atoms were defined anisotropically, but hydrogen atoms were omitted from the model. The final residuals of the refinement were $R = 0.0493$ and $R_w = 0.0660$. Atomic positional parameters and equivalent isotropic thermal parameters are listed in Table 2.

$MoOCl₂(dppe)(Py)$ (2)

The method used to obtain the structure of this compound was similar to that for **1;** the crystal data are given in Table 1. Atomic positions and equivalent isotropic thermal parameters are listed in Table 3.

Results and discussion

The red complex $Mo₂Cl₂(OAc)₂Py₂$ (1) was obtained from a simple reaction in which the dppe ligand of $Mo₂Cl₂(OAc)₂(dppe)$ was replaced by two

TABLE 1. Crystal data for $Mo_2Cl_2(OAc)_2Py_2 \tcdot 2CH_2Cl_2$ (1) and $MoOCl_2(dppe)(Py)$ (2)

	1	2
Formula	$Mo_2Cl_2O_4N_2C_{14}H_{16}\cdot 2CH_2Cl_2$	$MoOCl2P2NC31H29$
Formula weight	708.95	660.38
Space group	PĪ.	$P2_1/c$
$a(\AA)$	11.979(2)	11.480(2)
b(A)	13.977(3)	17.854(2)
c(A)	9.036(1)	15.639(2)
α , $(°)$	103.15(1)	90
β (°)	94.46(1)	115.51(1)
γ (°)	115.12(1)	90
$V(A^3)$	1307.5(4)	2982.3(7)
Z	2	4
D_{calc} (g/cm ³)	1.801	1.471
Crystal size (mm)	$0.40 \times 0.35 \times 0.15$	$0.42 \times 0.31 \times 0.25$
μ (Cu Ka) (cm ⁻¹)	140.507	65.862
Data collection instrument	Rigaku-AFC5R	Rigaku-AFC5R
Radiation monochromated	1.541838	1.541838
in incident beam (Cu K α , Å)		
Orientation reflections: no.,	22, $44.6 < 20 < 52.9$	25; $48.1 < 20 < 52.9$
range (2θ)		
Temperature $(°)$	$20 + 1$	$20 + 1$
Scan method	$2\theta-\omega$	$20-\omega$
Data collection range, 2θ (°)	$4 \leq 2\theta \leq 120$	$4 \leq 2\theta \leq 120$
No. unique data, total	3683, 2697	4263, 3831
with $F_0^2 > 3\sigma (F_0^2)$		
No. parameters refined	289	343
Transmission factors: max., min.	1.00, 0.47	1.00, 0.56
R^a	0.0493	0.0458
R_{w}^{b}	0.0660	0.0769
Quality-of-fit indicator ^c	1.451	1.656
Largest shift/e.s.d., final cycle	0.31	0.03
Largest peak $(e/\text{\AA}^3)$	0.629	0.744

 ${}^{a}R=\Sigma\left|\left|F_{0}\right|-\left|F_{c}\right|\left|\left/\Sigma\right|F_{0}\right|.\right.$ ${}^{b}R_{w}=[\Sigma w(\left|F_{0}\right|-\left|F_{c}\right|)^{2}/\Sigma w\left|F_{0}\right|^{2}]^{1/2}; w=1/\sigma^{2}(\left|F_{0}\right|).$ $N_{\text{parameters}}$)]^{1/2}. ${}^{\circ}$ Quality-of-fit = $[\Sigma w/(F_0|-|F_{\rm c}|)^2/(N_{\rm observed}$

TABLE 2. Positional and isotropic equivalent thermal parameters (\hat{A}^2) and their e.s.d.s for Mo_2Cl_2 - $(OAc)₂Py₂·2CH₂Cl₂$

TABLE 3. Positional and isotropic equivalent thermal			
parameters (\AA^2) and their e.s.d.s for MoOCl ₂ (dppe)(Py)			

Anisotropically refined atoms are given in the form of the equivalent isotropic displacement parameter defined as: $(4/3)[a^2\beta_{11}+b^2\beta_{22}+c^2\beta_{33}+ab(\cos\gamma)\beta_{12}+ac(\cos\beta)\beta_{13}+bc (\cos \alpha)\beta_{23}$.

pyridine ligands. The green complex Mo- $\text{OCl}_2(\text{dppe})(Py)$ (2) was obtained as a byproduct resulting from oxidation of $Mo₂Cl₂(OAc)₂(dppe)$. The source of oxygen was most likely air. In the previously reported preparation [6] of $Mo₂Cl₂(OAc)₂(dppe)$, the method was different, starting with $Mo_2Cl_2(OAc)_2(PPh_2)_2$. The present method gave a yield of only 45% but has the advantage of proceeding directly from $Mo₂(OAc)₄$. The compound was previously described as purple whereas **our product appeared pink, perhaps because of different particle sizes.**

$Mo_2Cl_2(OAc)_2(Py)_2(1)$

Crystals of this complex conform to the space group *Pi* **with two molecules in the unit cell. Figure 1 shows the ORTEP diagrams of these two molecules**

Anisotropically refined atoms are given in the form of the equivalent isotropic displacement parameter defined as: $(4/3)[a^2\beta_{11}+b^2\beta_{22}+c^2\beta_{33}+ab(\cos\gamma)\beta_{12}+ac(\cos\beta)\beta_{13}+bc (\cos \alpha)\beta_{23}$.

which are interrelated by an inversion center. Table 4 lists some selected bond distances and angles for 1. **The molecules** of 1 **have the cis** arrangement of the two carboxylate groups.

The molecules of **1** show **that the Mo-0 bond** length is a function of the *trans* ligand within the **same molecule. The average Mo-0 bond distance** *trans* to Cl is about 0.1 Å longer than the average **Mo-0 distance** *tram* **to the pyridine ligand, suggesting that the chloride atom lies higher in a trans-influence series for the Mo(I1) complexes than the pyridine** ligand. Combining the series, $Et_3P > Me_3CCO_2 \geq Cl$, **which was found from two isomers of**

Fig. 1. ORTEP drawing for $Mo₂Cl₂(OAc)₂Py₂$, showing two molecules which are interrelated by an inversion center. The dashed lines represent the weak interactions between the molecules.

 $Mo_2(O_2CCMe_3)_2Cl_2(PEt_3)_2$ [2], the series now can be written as $Et_3P > Me_3CCO_2 \ge Cl > Py$.

The crystal packing that leads to the formation of infinite chains is shown in Scheme 1. The molecules are linked together by weak interactions through two chlorine atoms $(Mo--Cl(1)=3.082$ Å and $Mo--Cl(2)=3.018$ $Å$). The molecules of $Mo_{2}(O_{2}CCF_{3})_{2}(NCC_{2}H_{5})_{2}Cl_{2}\cdot Mo_{2}(O_{2}CCF_{3})_{3}(C_{2}H_{5}-C_{2}H_{2})$ CN)Cl [4] were also found to be linked by three Cl---Mo bridges $(2.894 - 3.005 \text{ Å})$ and one O---Mo bridge into finite chains in which the two dinuclear units alternate.

Due to the insolubility of $Mo_2Cl_2(OAc)_2(dppe)$ in most solvents, the crystal structure was not determined, but a *cis* arrangement of the acetate groups was proposed on indirect evidence. The preparation of $Mo_2Cl_2(OAc)_2Py_2$ by direct ligand replacement provides support for the proposed structure of $Mo₂Cl₂(OAc)₂(dppe)$ given below. This kind of structure has also been proposed by Bakir and Walton for complexes of the type $Mo_2X_2(OAc)_2(PP)$ (X = Cl, Br, I; $PP = diphosphine$ ligands) [6] and was considered to be most stable when the overall rotation geometry remains eclipsed, as seen in the cases with quadruply bonded Mo_{2}^{4+} species.

$Mo₂OCl₂(dppe)(Py)$ (2)

The crystals of 2 conform to the space group $P2₁/c$ with four molecules in the unit cell. Figure 2 shows the ORTEP diagram of this complex. The five ligands coordinated to the Mo atom form a highly distorted octahedron. Table 5 lists some selected bond distances and angles for 2. The two Cl atoms are cis to each other and the oxygen atom

TABLE 4. Selected bond distances (A) and angles $(°)$ for $Mo₂Cl₂(OAc)₂Py₂·2CH₂Cl₂$

Bond lengths (Å)	
$Mo(1)-Mo(2)$	2.131(1)
$Mo(1)-Cl(1)$	2.440(2)
$Mo(1)-O(1)$	
$Mo(1)-O(2)$	2.105(5) 2.114(6)
$Mo(1)-N(1)$	2.232(6)
$Mo(2)-Cl(2)$	2.445(2)
	2.094(6)
$Mo(2)-O(3)$	2.123(5)
$Mo(2)-O(4)$ $Mo(2)-N(2)$	2.203(8)
Bond angles (°)	
$Mo(2)-Mo(1)-Cl(1)$	106.42(7)
$Mo(2) - Mo(1) - O(1)$	91.2(2)
$Mo(2)-Mo(1)-O(2)$	90.9(2)
$Mo(2)-Mo(1)-N(1)$	102.5(2)
$Cl(1) - Mo(1) - O(1)$	88.6(2)
$Cl(1) - Mo(1) - O(2)$	162.4(2)
$Cl(1) - Mo(1) - N(1)$	90.6(2)
$O(1) - Mo(1) - O(2)$	87.9(2)
$O(1) - Mo(1) - N(1)$	165.9(3)
$O(2) - Mo(1) - N(1)$	88.6(2)
$Mo(1)-Mo(2)-Cl(2)$	105.25(7)
$Mo(1)-Mo(2)-O(3)$	91.0(2)
Mo(1) – Mo(2) – O(4)	90.6(2)
$Mo(1)-Mo(2)-N(2)$	104.3(2)
$Cl(2) - Mo(2) - O(3)$	90.6(2)
$Cl(2) - Mo(2) - O(4)$	164.1(2)
$Cl(2) - Mo(2) - N(2)$	89.4(2)
$O(3) - Mo(2) - O(4)$	87.7(2)
$O(3) - Mo(2) - N(2)$	164.2(3)
$O(4) - Mo(2) - N(2)$	87.9(2)
$Mo(1)-O(1)-C(1)$	118.1(6)
$Mo(1)-O(2)-C(3)$	118.1(7)
$Mo(2)-O(3)-C(3)$	119.3(5)
$Mo(2)-O(4)-C(1)$	118.3(5)
$Mo(1)-N(1)-C(5)$	119.5(5)
$Mo(1)-N(1)-C(9)$	122.5(6)
$Mo(2)-N(2)-C(10)$	119.5(5)
$Mo(2)-N(2)-C(14)$	123.1(6)

Numbers in parentheses are e.s.d.s in the least significant digits.

The two Mo-Cl bond distances, $\text{Mo-Cl}(1) = 2.492(1)$ Å and Mo-Cl(2)=2.458(1) Å, differ significantly, due to the different *trans* influences of P and O $(O > P)$. The two different Mo-P distances of 2.481(1) and 2.502(1) Å indicate that the *trans* influences of Py and Cl are in the order that $Py > Cl$.

Complex 2 allows some interesting comparisons with $MoOCl₂(PMe₂Ph)₃$ [11]. First, the average of the P-Mo-P angles of the cis phosphorus atoms in $MoOCl₂(PMe₂Ph)₃$ is 94.1°, while in 2 the angle is only 80.8" due to the constraint imposed by the fivemembered ring. Second, both the meridional planes of 2 are occupied by three types of atoms, while in $MoOCl₂(PMe₂Ph)₃$ one plane is occupied by three types of atoms and the other only by two types. So

$$
- - - M_0(1") = M_0(2") - \frac{3 \cdot 0!8}{2 \cdot 0!8 - \dots} - \frac{C_1(2)}{2 \cdot 0!8 - \dots} = M_0(1) - \frac{3 \cdot 0!82}{2 \cdot 0!8 - \dots} - \frac{C_1(1)}{2 \cdot 0!8 - \dots} = M_0(1) - \frac{3 \cdot 0!82}{2 \cdot 0!8 - \dots} - \frac{C_1(1)}{2 \cdot 0!8 - \dots} = M_0(1) = M_0(2') - \frac{1}{2 \cdot 0!8 - \dots} = M_0(1)
$$

Scheme 1.

Fig. 2. ORTEP drawing for $MoOCl₂(dppe)(Py)$.

far as we know, complex 2 is the only complex of the type $MoOX₂L₃$ (X = halogen atom and L = monodentate ligand) in which such a configuration has been structurally characterized.

Supplementary material

Full tables of bond distances, bond angles anisotropic and thermal parameters (10 pages)l; and two listings of observed and calculated structure factors (35 pages) are available from author F.A.C. upon request.

TABLE 5. Selected bond distances (\hat{A}) and angles (\degree) for $MoOCl₂(dppe)(Py)$

Distances (Å)	
$Mo-Cl(1)$	2.492(1)
$Mo-Cl(2)$	2.458(2)
$Mo-P(1)$	2.481(1)
$Mo-P(2)$	2.502(1)
$Mo-O$	1.682(3)
$Mo-N$	2.231(4)
Angles $(°)$	
Cl(1) – Mo – Cl(2)	89.24(4)
$Cl(1) - Mo - P(1)$	76.81(4)
$Cl(1) - Mo - P(2)$	82.33(4)
$Cl(1)-Mo-O$	167.3(1)
$Cl(1) - Mo - N$	91.0(1)
$Cl(2) - Mo - P(1)$	166.04(4)
Cl(2) – Mo – P(2)	97.40(4)
$Cl(2)-Mo-O$	102.8(2)
$Cl(2)-Mo-N$	87.3(1)
$P(1) - Mo - P(2)$	80.81(4)
$P(1) - Mo - O$	91.1(1)
$P(1) - Mo - N$	92.9(1)
$P(2) - Mo - O$	91.8(1)
$P(2) - Mo - N$	171.7(1)
$O-Mo-N$	93.8(1)
$Mo-P(1)-C(1)$	118.6(2)
$Mo-P(1)-C(7)$	116.3(2)
$Mo-P(1)-C(13)$	107.1(2)
$Mo-P(2)-C(14)$	107.0(1)
$Mo-P(2)-C(15)$	117.3(2)
$Mo-P(2)-C(21)$	118.1(2)
$C(14)-P(2)-C(15)$	104.7(2)
$Mo-N-C(27)$	122.5(3)
$Mo-N-C(31)$	118.7(3)

Numbers in parentheses are e.s.d.s in the least significant digits.

Acknowledgement

We thank the National Science Foundation for support.

References

1 J. A. Potenza, R. J. Johnson and J. San Filippo, Jr., *Inorg. Chem., 15* (1976) 2215.

- 2 J. D. Arenivar, V. V. Mainz, H. Ruben and R. A. Anderson, *Inorg. Chem.*, 21 (1982) 2649.
- M. L. H. Green and G. Parkin, J. *Chem. Sot., Dalton ⁸ Trans., (1982) 2519.*
- P. Agaskar and F. A. Cotton, Inorg. C/rim. *Acta,* 83 (1084) 33. 9
- 5 F. A. Cotton and G. L. Powell, *Polyhedron*, 4 (1985) 1669.
- 6 M. Bakir and R. A. Walton, *Polyhedron*, 7 (1988) 1279.
- A. B. Brignole and F. A. Cotton, *Inorg* Synrh., I3 (1972) 81.
- (a) A. Bino, F. A. Cotton and P. E. Fanwick, Inorg. Chem., *18* (1979) 3558; (b) F. A. Cotton, B. A. Frenz, G. Deganello and A. Shacer, *J. Organomet.* Chem., 50 1073) 227
- $A \cap T$. North, D. C. Phillips and F. S. Mathews *Acta Crystallog., Sect. A,* 24 (1968) 351.
- G. M. Sheldrick, *SHELXS-86,* Institut fur Anorganische Chemie der Universitat Gottingen, FRG, 1986.
- 11 L. Manojlovic-Muir, *J. Chem. Soc. A*, (1971) 2796.