

Syntheses and catalytic activities of new poly(1-pyrazolyl)boratoruthenium complexes containing weakly coordinating nitrile ligands

Masayoshi Onishi*, Kazuto Ikemoto and Katsuma Hiraki Department of Industrial Chemistry, Faculty of Engineering, Nagasaki University, Nagasaki 852 (Japan)

(Received July 4, 1991)

Poly(1-pyrazolyl)borato ligands $BH_nPz_{(4-n)}$ (Pz = 1pyrazolyl) have become one of the most popular ligands in coordination chemistry since their introduction by Trofimenko, and the ligands especially in the tridentate coordination mode are often considered as π -cyclopentadienyl analogues in that both kinds of ligands effectively occupy three facial coordination sites around a metal ion and are sixelectron donors with uni-negative charge [1]. Their complexes are known for almost every transition metal, many displaying unusual structural and chemical properties, such as stereochemical fluxionality observed in NMR spectroscopy [1]. However for ruthenium, only a few poly(1-pyrazolyl)borato complexes have been described [2], in spite of the wellknown potentiality of ruthenium for affording high efficient catalytic species in a variety of homogeneous catalytic reactions [3]. To our knowledge, there have been no descriptions on catalytic reactions with transition metal poly(1-pyrazolyl)borate complexes so far, in sharp contrast to the case of the π cyclopentadienyl analogues, on which much research has been performed in the last decade, for example for the modification of catalytic reactivities by pentamethyl introduction into the cyclopentadienyl rings [4]. As part of our objectives in developing catalytic reaction systems with new poly(1pyrazolyl)borato ligands, we have treated dichlorotetrakis(organonitrile)ruthenium(II) with thallium salts of these anionic ligands to get chlorobis-(organonitrile)[poly(1-pyrazolyl)borato]ruthenium-

*Author to whom correspondence should be addressed.

3 and 4, which are analogous to 1 and 2, respectively. Table 1 summarizes some properties of these new

а

reactions

complexes*.

In the ¹³C NMR spectrum of the BPz₄ complex 1 in C₆D₆ at 30 °C, four pyrazolyl groups were divided into three classes by a 2:1:1 ratio. Two spectroscopically equivalent groups and one unique pyrazolyl group were tridentately coordinated to ruthenium, and the remaining one was uncoordinated. The classification of the three coordinated pyrazolyl groups in the 2:1 ratio indicates lack of rotation [1] of the tridentate BPz₄ ligand around the B-Ru axis at this temperature.

(II), of which the organonitrile can be regarded as

A mixture of thallium tetrakis(1-pyrazolyl)borate

and tetrakis(benzonitrile)dichlororuthenium(II) was heated in dichloromethane under reflux for 2 days.

After removal of the solvent in vacuo, the residue was chromatographed on a silica-gel column, eluting with diethyl ether to give a yellowish green solid upon evaporation. The solid was characterized as

bis(benzonitrile)chloro[tetrakis(1-pyrazolyl)borato]-

ruthenium(II)(1). On the other hand, similar reaction

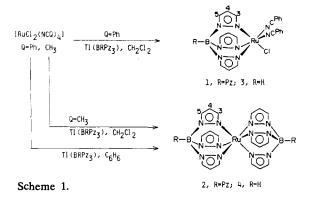
under benzene reflux gave a white powder of

bis[tetrakis(1-pyrazolyl)borato]ruthenium(II) (2), i.e. bis(π -cyclopentadienyl)ruthenium(II) (rutheno-

cene) analogue. Only complex 2 was obtained from

ruthenium(II), and formation of bis(acetonitrile)-

chloro[tetrakis(1-pyrazolyl)borato]ruthenium(II) was


not observed. As shown in Scheme 1, thallium hydrotris(1-pyrazolyl)borate yielded the complexes

tetrakis(acetonitrile)dichloro-

of

a weakly coordinating coexistent ligand [5].

Upon addition of olefins, such as methyl acrylate to the methanol solution of 1, a clear color change from yellowish green to reddish brown occurred immediately confirming the potential coordinative unsaturation of 1 due to facile displacement of the weakly coordinating nitrile ligands by incoming olefin

^{*}Satisfactory elemental analyses were obtained for all the new complexes described in this paper.

Complex	Melting point ^a (°C)	IR ^b (cm ⁻¹)	¹³ C NMR of 1-pyrazolyl groups ^e		
			δ(3-C)	δ(4-C)	δ(5-C)
1 [RuCl(BPz ₄)(PhCN) ₂]	145	2200(CN)	$\begin{cases} 145.32(2) \\ 141.78(1) \\ 143.88(1) \end{cases}$	106.44(2) 106.52(1) 106.79(1)	135.36(2) 136.25(1) 136.06(1)
2 [Ru(BPz ₄) ₂]	250		{ 143.97(6) { 141.79(2)	105.90(6) 106.17(2)	134.98(6) 136.14(2)
3 [RuCl(BHPz ₃)(PhCN) ₂]	150	{ 2480(BH) 2230(CN)	{ 143.42(2) 142.80(1)	105.90(3)	134.98(2) 135.48(1)
4 [Ru(BHPz ₃) ₂]	260	2480(BH)	143.11(6)	105.32(6)	134.88(6)

TABLE 1. Properties of new poly(1-pyrazolyl)boratoruthenium complexes

^aIn evacuated capillary. ^bIn KBr disk; stretching frequencies for the bond shown in parentheses. ^cIn CDCl₃, except 1 in C_6D_6 ; δ value from TMS; the number of carbon atoms shown in parentheses; ¹³C resonances of benzonitrile ligands are omitted.

TABLE 2. Olefin hydrogenation by the poly(1-pyrazolyl)borato complexes^a

Compound	Olefin	Conversion (%)	Product ^b	TN°
1	$H_2C=CHCO_2CH_3$ 100 C_2H		C ₂ H ₅ CO ₂ CH ₃	200
1	$C_6H_5-CH_2-CH=CH_2$	100	$\begin{cases} C_{6}H_{5}-C_{3}H_{7} \\ C_{6}H_{5}-CH=CH(CH_{3}) (E) \\ C_{6}H_{5}-CH=CH(CH_{3}) (Z) \end{cases}$	122 12 65
3	$H_2C = CHCO_2CH_3$	100	C ₂ H ₅ CO ₂ CH ₃	200
3	$C_6H_5-CH_2-CH=CH_2$	57	$\begin{cases} C_{6}H_{5}-C_{3}H_{7} \\ C_{6}H_{5}-CH=CH(CH_{3}) (E) \\ C_{6}H_{5}-CH=CH(CH_{3}) (Z) \end{cases}$	42 19 52

*Reaction conditions: complex, 0.025 mmol; olefin, 5 mmol; methanol, 7 ml; Et₃N, 1 ml (7.17 mmol); H₂, 50 kg/cm² (initial pressure at r.t.); reaction temperature, 50 °C; reaction time, 16 h. ^bBy GLC analysis. ^cTurnover number per catalysis.

substrates. Therefore, an attempt at the hydrogenation of methyl acrylate in methanol for 16 h with molecular hydrogen under 50 kg/cm² pressure, in the presence of Et₃N, was made. Methyl acrylate disappeared and was all converted to methyl propionate, as shown in Table 2. In the case of 3phenylpropene hydrogenation, (E)- and (Z)-1phenylpropenes were formed as by-products through an olefin double-bond migration process. Similar results were also obtained for the BHPz₃ complex 3. As a whole, the present study demonstrates for the first time catalytic olefin hydrogenation by use of transition metal poly(1-pyrazolyl)borate complexes with molecular hydrogen under pressure. Further studies, involving those on other related substrates for hydrogenation and on similar complexes with poly(alkyl-substituted 1-pyrazolyl)borato ligands, are now in progress and will be reported in subsequent publications.

Acknowledgements

We thank Mr Jun-ichi Morishita and Mr Akira Monji in this department for their technical assistance.

References

- (a) S. Trofimenko, Prog. Inorg. Chem., 34 (1986) 115;
 (b) A. Shaver, in G. Wilkinson (ed.), Comprehensive Coordination Chemistry, Vol. 2, Pergamon, Oxford, 1987, Ch. 13.6, p. 245, and refs. therein; (c) S. Trofimenko, J. Am. Chem. Soc., 89 (1967) 3170; (d) P. Meakin, S. Trofimenko and J. P. Jesson, J. Am. Chem. Soc., 94 (1972) 5677; (e) M. Onishi, K. Sugimura and K. Hiraki, Bull. Chem. Soc. Jpn., 51 (1978) 3209.
- (a) M. O. Albers, S. Francesca, A. Crosby, D. C. Liles, D. J. Robinson, A. Shaver and E. Singleton, Organometallics, 6 (1987) 2014; (b) M. I. Bruce, M. Z. Iqbal and F. G. A. Stone, J. Chem. Soc. A, (1971) 2820; (c)

M. I. Bruce, D. N. Sharrocks and F. G. A. Stone, J. Organomet. Chem., 31 (1971) 269; (d) D. J. O'Sullivan and F. J. Lalor, J. Organomet. Chem., 57 (1973) C-58; (e) A. M. McNair, D. C. Boyd and K. R. Mann, Organometallics, 5 (1986) 303; (f) M. M. de V. Steyn, E. Singleton, S. Hietkamp and D. C. Liles, J. Chem. Soc., Dalton Trans., (1990) 2991.
3 M. A. Bennett and T. W. Matheson, in G. Wilkinson

- 3 M. A. Bennett and T. W. Matheson, in G. Wilkinson (ed.), Comprehensive Organometallic Chemistry, Vol. 4, Pergamon, Oxford, 1987, Ch. 32.9, p. 931.
- 4 (a) P. M. Maitlis, Acc. Chem. Res., 11 (1978) 301; (b)
 H. Mauermann, P. N. Swepston and T. J. Marks, Organometallics, 4 (1985) 200; (c) P. L. Watson and
 G. W. Parshall, Acc. Chem. Res., 18 (1985) 51; (d) H.
 Yasuda and A. Nakamura, Rev. Chem. Intermed., 6 (1986) 365.
- 5 J. P. Collman and L. S. Hegedus, *Principles and Applications of Organotransition Metal Chemistry*, University Science Books, Mill Valley, CA, 1980, p. 153.