

Is Rh(PMe₃)₃⁺ Formed upon Anion Exchange of **Rh(PMe3)4+Cl? Crystal and Molecular Structure of** $Rh(PMe₃)₄$ ⁺BPh₄⁻ and Ir(PMe₃)₄⁺PF₆

OFER BLUM^a, JOSEPH C. CALABRESE^b, FELIX FROLOW^a and DAVID MILSTEIN*a,b

'Department of' *Organic Chemistry, The Weizrnann Institute of Science, Rehovot 76100 (Israel)*

bCentral Research and Development Department, B.I. DuPont de Nemours and Company, Experimental Station, Wilmington, DE 19899 (U.S.A.)

(Received February 20, 1990; revised May 7, 1990)

Rhodium and iridium trimethylphosphine complexes serve as models [I] and as catalysts [2] for homogeneously catalyzed processes, by virtue of the high basicity and small size of this versatile ligand. Catalytic photochemical activation of hydrocarbons by $Rh(CO)(PMe₃)₂Cl$ [3] is thought to involve a 14e Rh(I) trimethylphosphine intermediate. Evidence for intermediacy of such a complex in C-H activation is provided by flash photolysis studies [4] and by studies of $C-H$ reductive elimination $[1b, 2a]$.

Whereas existence of stable 14e rhodium(I) complexes containing bulky phosphines [5] is perhaps not surprising, the isolation of stable $Rh(PMe₃)₃⁺X⁻$ $(X = BPh₄, PF₆)$ reported by Wilkinson and coworkers [6] is, in our view, quite unexpected. Even more surprisingly, this complex is reported as being formed upon anion exchange of the 1:1 electrolyte $Rh(PMe₃)₄⁺Cl⁻$ (1), in an attempted preparation of $Rh(PMe₃)₄⁺X⁻$ [6]. Citations of this work appear in the literature [5e, 7] and it is pointed out as surprising in a recent review [8].

Because of our general interest in low valent electron-rich complexes of rhodium, we have repeated the reported procedure for the preparation of $Rh(PMe₃)₃$ ⁺BPh₄⁻ and have characterized the product by X-ray, showing that $Rh(PMe₃)₄$ ⁺BPh₄⁻ (2) is formed. We also report here the structure of the analogous $Ir(PMe₃)₄⁺PF₆⁻ (3) [9]$, a highly reactive complex useful for the formation of various unusual adducts [9, lo].

Treatment of an aqueous solution of **1** under nitrogen with a slight excess of $NABPh_4$ resulted in formation of a pale yellow powder, as reported [6]. The ${}^{31}P{^1H}$ NMR spectrum of this product in THF-d₈ at 25 °C shows a doublet at $\delta - 8.58$ (*J*(Rh-P) = 132 Hz) which is unexpected for a T-shaped ground state $RhL₃$ unit [5a, e, 11]**. Slow vapor diffusion of benzene into a pyridine solution of this complex during 3 days resulted in large orange plates exhibiting an unchanged ${}^{31}P(^{1}H)$ NMR spectrum. An X -ray structural study[†] unambiguously shows that $Rh(PMe₃)₄⁺BPh₄⁻ (2)$ and not the *tris* complex was obtained (Fig. 1). (The preparation of $Rh(PMe₃)₄$ - PF_6^- from a cationic Rh(I) indenyl complex was reported in ref. 12.) For comparison, we have also determined the structure of $Ir(PMe₃)₄⁺PF₆⁻$ (3) (Fig. 2), crystals of which were grown by vapor diffusion of pentane into a THF solution of the complex.

2 forms an interesting arrangement in which two cation-anion pairs entrap a benzene molecule. The distances of $C5-Rh1$ (3.53 Å) and $C8-Rh2$ (3.49 Å) are probably too large for an intermolecular 'agostic' $Rh \cdot \cdot \cdot H$ interaction. No interaction is observed between the unsaturated rhodium center and the phenyl groups of the anion. The cation shows considerable distortion from planarity towards a tetrahedral arrangement, with P-P twist angles of 23.73 and 28.12° for Rh1 and Rh2, respectively. This is undoubtedly a result of steric crowding of the PMe₃ ligands. A comparison of the pseudo-*trans* $P-Rh-P$ angles shows that this distortion in 2 $(P-Rh1-P)$ 158.96, 152.6°; P-Rh2-P 157.8, 162.02°) is smaller

[†]Crystal data for 2: C₇₈H₁₁₈B₂P₄Rh₂, monoclinic-b, C2/c N_0 , 15), $a = 25.762(7)$, $b = 19.353(4)$, $c = 21.246(5)$, $a = 21.246(5)$ $g = 131.26(1)^{\circ}$. $T = 173$ K, $V = 7962.5$, $\frac{3}{4}$, $Z = 4$, $\frac{1}{2}$ (Mo) \approx 6.05 cm⁻¹; Syntex R3, Mo K α radiation; 8281 data collected using ω scan method, $4.2^{\circ} \le 2\theta \le 52.0^{\circ}$, 4826 unique reflections with $I \geq 3.0\sigma(I)$; solution by automated Patterson analysis (PHASE) and direct methods (MULTAN), refinement by full matrix least-squares technique, weights $\left[\sigma^2(l) +$
0.0009⁷²1^{-1/2} 408 parameters, all non-H atoms anisotropic H atoms fixed, $R = 0.044$, $R_w = 0.052$.

 $For 3: C₁₂H₂₆IF₂ * PF₆, orthonphombic, *P* $(N_0, 62)$,$ $\alpha = 17.426(6)$, $\beta = 13.907(4)$, $c = 9.762(5)$ A, $T = 90$ K, $\gamma = 2121(2)$ λ^3 , $Z = 4$, α (Mo) = 65.37 cm⁻¹. Rigaku AFC5R $\frac{1}{2}$ diffractometer, $\frac{1}{2}$ $\frac{1}{2}$ data collected using w scan method \degree \leq 20 \leq 54.0^o, 1955 unique reflections with $F_0 \geq 3\sigma(F_0)$; and all times by automated Patterson analysis (SHELXS-86) and direct methods (SHELXS-86), refined by full matrix leastsuares technique, weights $\lceil a^2(F) \rceil$. 184 parameters, all non-H atoms anisotropic, H atoms from difference Fourier map refined, $R = 0.041$, $R_w = 0.034$.

0020-1693/90/\$3.50

0 Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed at the Weizmann Institute of Science.

^{**}The reported [6] ^{31}P ¹H} NMR spectra are: Rh(PMe₃)₃⁺- BPh_4^- (in CD₃NO₂): δ -14.87 (br, d, J(Rh-P) = 110 Hz); Rh(PMe₃)₃⁺PF₆⁻ (in D₂O): δ -14.47 (br, s); -25 °C: -14.99 (d, $J(Rh-P) = 132.5$ Hz).

Fig. 1. Structure of 2 (hydrogen atoms omitted for clarity). Selected bond distances (A): Rh(l)-P(1) 2.313(2); Rh(l)-P(2) 2.285(2); Rh(2)-P(3) 2.304(2); Rh(2)-P(4) 2.315(2). Selected bond angles ("): P(l)-Rh(l)-P(la) 158.96(9); P(l)-Rh(l)-P(2) 92.48(6); P(l)-Rh(l)-P(2a) 92.48(6); P(2)-Rh(l)-P(2a) 152.6(l); P(3)-Rh(2)-P(3a) 157.8(l); P(3)-Rh(2)-P(4) 91.81(6); P(3)-Rh(2)-P(4a) 91.64(6); P(4)-Rh(2)-P(4a) 162.02(9).

Selected bond distances (A); $Ir(1)-P(1)$ 2.282(5); $Ir(1)-P(2)$ 2.289(5); Ir(1)-P(3a) 2.290(5); Ir(1)-P(3) 2.290(4). Selected bond angles (°): P(1)-Ir(1)-P(2) 149.3(1); P(1)-Ir(1)-P(3) 93.2(2); $P(2) - Ir(1) - P(3)$ 94.7(2); $P(2a) - Ir(1) - P(3)$ 150.3(l).

than the one observed in 1 (P-Rh-P 151.46, 148.29[°]) or in Rh(PMe₂Ph)₄⁺BF₄⁻(150.77, 150.01[°]) $[13]$, both having similar pseudo-trans angles to those

of the iridium analogues $3(149.3^{\circ})$ and Ir(PMePh₂)₄⁺- BF_4^- (150.5°) [14]. The uniqueness of 2 may be a result of the cage structure, which may also be responsible for the considerable difference between the two pseudo-trans angles in each one of the molecules of 2. All of the above rhodium and iridium complexes show very similar M-P distance $(\sim 2.3 \text{ Å})$ and also exhibit the same trend in $M-P-C$ angles, the one involving the methyl on the transoid MP_2 plane being considerably larger (by as much as 12°) than the two other $M-P-C$ angles of the same $PR₃$ group.

Conclusions

(i) Anion exchange of $Rh(PMe₃)₄$ ⁺Cl⁻ leads in our hands to $Rh(PMe₃)₄$ ⁺BPh₄⁻ and not to $Rh(PMe₃)₃$ ⁺- BPh_4^- as previously reported.

(ii) $Rh(PMe₃)₄⁺BPh₄⁻$ in the currently reported (cage) arrangement is significantly less distorted than $Rh(PMe₃)₄$ ⁺Cl⁻, Ir(PMe₃)₄⁺PF₆⁻ and other $ML₄$ ⁺ complexes.

(iii) $Ir(PMe₃)₄⁺PF₆⁻, Rh(PMe₃)₄⁺Cl⁻ and Rh (PMe₂Ph)₄$ ⁺BF₄⁻ are structurally very similar.

Acknowledgement

We thank the U.S.-Israel Binational Science Foundation, Grant No. 86-00316 for supporting the work which was performed at the Weizmann Institute of Science.

References

- 1 (a) D. L. Thorn, J. Mol. Cuful.. *17* (1982) 279; (b) D. Milstein, Act. Chem. *Res.,* I7 (1984) 221; **(c) 21** (1988) 428:
- 2 (a) D. Milstein. *J. Am. Chem. Sot., 104* (1982) *5227; ibj J. Chem. Sot., Chem. Commun.,* (1982) 1357; (c) U.S. *Patent, 4581 I78 (1986).*
- (a)T. Sakakura and M. Tanaka, Chem. *Left.,* (1987) 249; (b) *J. Chem. Sot., Chem. Commun., (1987) 758.*
- *C.* T. Spillett and P. C. Ford, *J. Am. Chem. Sot.. 111* (1989) 1932.
- (a) Y. W. Yared, S. L. Miles, R. Bau and C. A. Reed, J. *Am.* Chem. Sot., 99 (1977) 7076; (b)H. L. M. Van Gaal and F. L. H. Van Den Bekerour, *J. Organomet Chem., 134 (1977) 237. (c)T.* Yoshida, T. Okano and S. Otsuka, *J. Chem. Sot., Chem. Commun., (1987) 855;* (d) T. Yoshida, T. Okano, D. L. Thorn, T. H. Tulip S. Otsuka and J. A. Ibers, *J. Organomet. Chem., 181* (1979) 183; (e) A. R. Siedle, R. A. Newmark and R. D. Howells, *Inorg.* Chem., 27 (1988) 2473.
- (a) R. A. Jones, F. Mayor Real, G. Wilkinson, A. M. R. Galas, M. B. Hursthouse and K. M. Abdul Malik, *J. Chem.*

Sot., Chem. Commun., (1979) 489; (b) *J.* Chem. Sot., *D&on Trans.,* (1980) 511.

- *7* S. E. Kegley, C. J. Schaverien, J. H. Freudenberger, R. G. Bergman, S. P. Nolan and C. D. Hoff, *J. Am. Chem. Sot., 109* (1987) 6563.
- *8* F. H. Jardine and P. S. Sheridan, in G. Wilkinson, R. D. Gillard and J. A. McCleverty (eds.), Comprehensive *Coordination Chemistry,* Vol. 4, Pergamon, Oxford, 1987, p. 921.
- *9* D. L. Thorn, *Organometallics. I (1982) 197.*
- 10 (a) D. L. Thorn, *J. Am. Chem. Soc..* 102 (1980) 7109: (b) D. L. Thorn and T. H. Tulip. *Organometallics. 1* (1982) 1580; (c) D. Milstein, J. C. Calabrese and I. D. Williams, J. *Am. Chem. Sot., 108* (1986) *6387;* (d) A. L. Casalnuovo, J. C. Caiabrese and D. Milstein, *J. Am. Chem. Sot., 110* (1988) 6738.
- 11 S. Komiya, T. A. Albright, R. Hoffman and J. K. Kochi, *J. Am. Chem. Soc.*, 98 (1976) 7255.
- 12 H. Werner and R. Feser, 2. *Naturforsch., Teil B. 35* (1980) *689.*
- 13 E. G. Lundquist, W. A. Streib and K. G. Caulton, *Inorg. Chim. Acta, 159 (1989) 23.*
- 14 G. R. Clark, C. A. Reed. W. R. Roper, B. W. Skelton and T. N. Waters, *J. Chem.'Soc., Chem.'Commun.,* (1971) *758.*