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Abstract 

The structure of the chelate dichloro di-2-benzo- 
thiazolylphenylmethanol zinc(H) is described by X- 
ray diffraction analysis. It was prepared from di-2- 
benzothiazolylphenylmethanol, which is readily 
available from di-2-benzothiazolylmethane. 

Introduction 

Several reports about di- and triheteroaryl- 
methanes, -methanols and related compounds as 
ligands of different metals have been published 
[l-7]. Thus, di-2-benzothiazolylmethane has been 
proposed as a fluorimetric reagent for Li+ and Zn’+ 
determination because it forms fluorescent chelates 
with these metals [8]. 

*Author to whom correspondence should be addressed. 

In previous papers [9-l 11, we have reported the 
synthesis and tautomerism of C-substituted di-2- 
benzothiazolylmethanes, and the study of the photo- 
oxidation reaction of these compounds to the cor- 
responding methanols [ 121. 

Although both types of compounds could be 
proposed as bidentate or tridentate ligands, we have 
tested the ability of di-2-benzothiazolylphenyl- 
methanol (2) to chelate Zn2+. The X-ray diffraction 
analysis of crystals thus obtained has shown that 2 
is a bidentate ligand through both nitrogen atoms 
(Scheme 1). 

Experimental 

For X-ray experimental data, refinement proce- 
dures [ 13-191, coordinates and thermal parameters, 
see ‘Supplementary Material’. The IR spectra were re- 
corded in the solid state (KBr) on a Perkin-Elmer 577 
spectrophotometer. The ‘H NMR spectra were re- 

Scheme 1. 

*Author to whom correspondence should be addressed. 
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TABLE 1. Bond distances and angles 

Bond distances (A) 

Zn-Cl1 
Zn-Nl 
Sl-Cl 
s2-c2 
o-c3 
Nl-Cl6 
N2-C26 
C2-C3 
Cl l-Cl2 
c12-Cl3 
c14-Cl5 
c21 -c22 
C22-C23 
C24 -C25 
C31-C32 
C32-C33 
c34-c35 

Bond angles (“) 

Nl -Zn-N2 
C12-Zn-Nl 
Cl1 -Zn-Nl 
Cl-SI-Cl1 
Zn-Nl-Cl6 
Cl-Nl-Cl6 
Zn-N2 -C2 
Sl-Cl-N1 
Sl-Cl-C3 
N2-CZ-C3 
Cl -C3-C2 
O-c3Xl 
Cl-c3-c31 
Sl-Cll-Cl6 
C12-Cll-Cl6 
C12-C13-Cl4 
C14-C15-Cl6 
Nl-C16-Cl5 
S2-C21-C26 
C22-C21-C26 
C22-C23-C24 
C24-C25 -C26 
N2-C26-C25 
C3-C31 -C36 
C32-C31 -C36 
C32-C33-C34 
C34-C35 -C36 

Some torsion angles (“) 

Nl-Zn-N2-C2 
Cl1 -Zn-N2 -C2 
C12-Zn-NZ-C26 
C12-Zn-Nl-Cl 
C12-Zn-Nl-Cl6 
N2-Zn-Nl-Cl6 
Cll-Sl-Cl-C3 
Zn-Nl -Cl -Sl 

2.227(l) 
2.030(3) 
1.721(4) 
1.721(4) 
1.417(4) 
1.396(S) 
1.409(5) 
1.523(5) 
1.399(6) 
1.368(6) 
1.381(6) 
1.394(6) 
1.371(7) 
1.389(7) 
1.399(S) 
1.387(5) 
1.372(6) 

93.4(l) 
112.6(l) 
107.7(l) 
89.1(2) 

124.0(2) 
111.2(3) 
124.0(2) 
115.8(3) 
117.5(2) 
127.6(3) 
115.2(3) 
108.4(3) 
107.5(3) 
110.2(3) 
121.2(3) 
121.5(4) 
118.1(4) 
125.8(3) 
110.1(3) 
120.7(4) 
121.6(4) 
117.6(4) 
125.5(3) 
121.9(3) 
119.2(3) 
120.6(4) 
120.7(4) 

11.5(3) 
122.5(3) 
7 3.9(3) 

106.6(3) 
-79.5(3) 
164.2(3) 
173.3(3) 
174.6(2) 

Zn-Cl2 
Zn-N2 
Sl-Cl1 
s2-c21 
Nl-Cl 
N2-C2 
Cl-C3 
c3-c31 
Cll-Cl6 
c13-Cl4 
C15-Cl6 
C21-C26 
C23 -C24 
C25 -C26 
C31 -C36 
c33 -c34 
C35 -C36 

Cl2 -Zn--N2 
Cl1 -Zn-N2 
Cl1 -Zn-Cl2 
c2-s2-c21 
Zn-Nl-Cl 
Zn-N2-C26 
C2-N2-C26 
Nl-Cl-C3 
S2-C2-N2 
S2-C2-C3 
0-C3-C2 
C2-C3-C3 1 
o-c3-c31 
Sl-Cll-Cl2 
Cll-C12-Cl3 
c13-c14-Cl5 
Cll-C16-Cl5 
Nl-C16-Cl1 
s2-c21-c22 
C21-C22-C23 
C23-C24-C25 
C21-C26-C25 
N2-C26-C21 
C3-C31-C32 
c31-c32-c33 
c33-c34-c35 
C31-C36-C35 

C12-Zn-N2-C2 
Nl-Zn-N2-C26 
Cll-Zn-N2-C26 
Cll-Zn-Nl-Cl 
Cll-Zn-Nl-Cl6 
N2-Zn-Nl-Cl 
C21-S2-C2-C3 
Zn-Nl-Cl-C3 

2.197(l) 
2.037(3) 
1.7 34(4) 
1.7 30(4) 
1.304(4) 
1.297(S) 
1.529(5) 
1.5 38(4) 
1.390(5) 
1.398(6) 
1.389(5) 
1.396(5) 
1.386(7) 
1.387(6) 
1.378(5) 
1.376(6) 
1.397(5) 

112.6(l) 
113.4(l) 
115.0(l) 
89.3(2) 

124.6(2) 
125.2(2) 
110.9(3) 
126.3(3) 
116.2(3) 
115.7(2) 
109.0(3) 
109.4(3) 
107.1(3) 
128.6(3) 
117.6(4) 
120.9(4) 
120.6(3) 
113.5(3) 
129.2(3) 
118.0(4) 
121.1(4) 
12 1.0(3) 
113.4(3) 
118.9(3) 
120.0(4) 
119.5(4) 
120.0(4) 

-104.7(3) 
169.9(3) 

-58.9(3) 
-125.5(3) 

48.4(3) 

-9.6(3) 
171.3(3) 

- 11.6(5) 
(continued) 
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TABLE 1. (continued) 

Some torsion angles (“) 

C16-Nl-Cl-C3 173.8(3) Zn-N2-C2-S2 179.6(2) 
Zn-NZ-C2-C3 7.8(S) C26-N2-C2-C3 -171.0(3) 
Nl-Cl-C3-0 156.1(3) Nl-Cl-C3-C31 -88.5(4) 
Nl-Cl-C3-C2 33.7(5) N2-C2-C3-Cl -31.7(5) 
N2-C2-C3-0 -153.8(3) N2-C2-C3-C31 89.4(4) 
Cl-CJ-C31-C32 -82.3(4) 0-C3-C31 -C32 34.0(4) 
C2-C3-C31-C36 -30.6(S) 

corded at 60 MHz using a Perkin-Elmer spectrometer. 
The 13C NMR spectra were obtained at 75.43 MHz on 
a Varian XL-300 pulse Fourier transformation (PFT) 
spectrometer. 

Compounds 

Di-2-benzothiazolylphenylmethane (I) / I1 / 
A mixture of dieihyl phenylmalonate (20 mmol) 

and o-aminothiophenol (50 mmol) in polyphosphoric 
acid (200 ml) was mechanically stirred under a nitro- 
gen stream for 2 h at 80-90 “c, 3 h at 120 “c and 1 h 
at 140 “C. The mixture was allowed to cool to 80 “C 
and poured into stirred ‘ice-cold’ water. The solid pre- 
cipitate was filtered, washed with an aqueous solution 
of potassium carbonate and water, and then dried 
under vacuum over phosphorus pentoxide, yielding 
crude 1. Yields up to 90%. 

Di-2-benzothiazolylphenylmethanol(2) 
Attempts to crystallize crude 1 in ethanol-water 

afforded nearly quantitatively 2, melting point (m.p.) 
146-48 “c. Anal. Found: C, 67.07; H, 4.00; N, 7.60. 
Calc. for Cz1Hr4NZOS2: C, 67.35; H, 3.77; N, 7.48%. 
IR (KBr) v: 3360, 148.5, 1450, 1440, 1330, 1315 
cm-‘. *3C NMR (DMSO-d6): 175.9, 152.7, 142.4, 
134.9, 128.2, 128.0, 126.9, 126.3, 125.5, 123.0, 
122.3,79.6 ppm . 

Dichloro di-2-benzothiazolylphenylmethanol 
zinc(U) (3) 
Compound 3 was prepared by addition of a hot 

methanolic solution of 2 over a methanolic solution 
of zinc chloride, and precipitated on cooling. Yield 
75%; m.p. 273-276 “C. Anal. Found: C, 49.05; H, 
2.50; N, 5.09. Calc. for C2,Hi4NZOSZZnClz: C, 
49.38; H, 2.76; N, 5.48%. IR (KBr) V: 339Os, 1595w, 
157Ow, 149Os, 1460s 145Os, 1440s cm-‘. 

Results and Discussion 

Description of the Structure 
Figure 1 displays a view of the molecule with the 

crystallographic numbering, while bond lengths and 
bond angles are given in Table 1. 

Fig. 1. Perspective view of molecule 2 with crystallographic 

numbering. 

The molecule presents a pseudo-mirror plane 
defined by Zn, C3, 0 and C3 1 atoms, Cl 1, C 12 and 
C34 being clearly deviated from it. Details of this 
plane are given in Table 2. 

The chlorine and nitrogen atoms coordinated to 
zinc appear at the apexes of a distorted tetrahedron; 
the Nl -Zn-N2 angle is decreased to 93.4(l)O by the 
restricted position of the N atoms and, consequently, 
the Cl I-Zn-Cl2 angle increases to 115.0( 1)“; this 
geometry is in good agreement with other Zn com- 
pounds which present the same coordination pattern 
[20, 211. The five condensed rings are not in a plane, 
the angle between the two benzothiazole rings being 
16.5(l)‘. The central cyclohexane ring presents a 
boat conformation with Zn and C3 atoms being 
0.2 14( 1) and 0.357(3) A, respectively, from the plane 
defined by the others. Ring puckering coordinates 
[22] are q2 = 0.342(3), q3 = -0.048(3), I#J~ = -3.3- 
(5)O, e2 = 98.0(4)‘. The C3 atom presents a tetra- 
hedral environment. The 0 atom of the hydroxyl 
group is at 2.876(3) and 2.870(3) 8, from the Sl and 
S2 atoms, respectively, therefore showing no pre- 
ferred interaction with either of them. 
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I3 
I 

Fig. 2. Packing in the unit cell of compound 2. 

TABLE 2. Deviations (A) of the atoms from the mean plane 

defined by Zn, C3,0, C31 

Zn (*) O.OOO( 1) Cl -1.291(3) 

C3 (*) 0.007(3) c2 1.286(3) 

0 (*) -0.003(3) Nl -1.481(3) 

c31 (*) - 0.002(4) N2 1.479(3) 

Sl -2.688(l) 

Cl1 -0.187(l) s2 2.681(l) 

Cl2 0.049(l) Cl1 -3.634(4) 
c34 -0.165(4) c21 3.648(4) 

Cl2 -5.013(4) 

C32 -0.701(4) c22 5.030(4) 
C36 0.614(4) Cl3 -5.529(4) 
c33 -0.784(4) C23 5.566(5) 

c35 0.531(4) Cl4 -4.712(4) 

C24 4.768(5) 
Cl5 -3.353(4) 
c25 3.390(4) 

Cl6 -2.821(3) 
C26 2.842(4) 

Packing in the crystal is viewed in Fig. 2; mole- 
cules are linked only by van der Waals forces. 

Infrared Spectra 
The IR spectrum of 3 in the solid state shows 

strong bands at 3395, 1495 and 1440 cm-‘. By com- 
parison with the IR spectrum of 2 (KBr), the main 
significant differences are the shifts at higher frequen- 

cies of the vOH and ‘benzothiazole III’ bands which 
appear in the ligand at 3360 and 148.5 cm-‘, 
respectively. 

NMR Spectra 
Due to the low solubility of 3 in CDC13, ‘H NMR 

spectra were recorded in DMSO-d6, but the spectrum 
thus obtained was identical to that of ligand 2 in the 
same solvent: 6 (ppm) 8.54 (lH, s, OH), 8.10-7.30 
(13H, m, aromatic protons). From here it follows 
that the DMSO dissociates the chelate. This was also 
confirmed by comparing the 13C NMR spectra of 
compounds 2 and 3 in DMSO-d6 which were also 
identical. 

Supplementary Material 

Details of X-ray experimental data, refinement 
procedures, coordinates and thermal parameters are 
available from the authors on request. 
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