The Alkaline Hydrolysis of some Phosphato Pentaammine Cobalt(II1) Complexes

A. J. ROGERS, L. SARSON, R. BATCHELOR, S. CULBERT, C. R. CLARK and D. A. BUCKINGHAM* *Department of Chemistry, University of Otago, P.O. Box 56, Dunedin (New Zealand)* (Received January 17, 1990)

Abstract

Second-order rate constants $(k_{OH} (M^{-1} s^{-1}), 25.0)$ °C, $I = 1.0$ M (NaClO₄)) for the alkaline hydrolysis of the following complex ions are reported: $\text{Co(NH}_3)_{5}\text{OP(OR)}_{3}$ ³⁺, R = Me (78.3), Et (44.5); $\text{Co(NH}_3)$ ₅ OP(O)(OR)_2 ²⁺, R = Me (6.7 \times 10⁻²), Et (4.9×10^{-2}) , ⁿPr (3.5×10^{-2}) , ⁿBu (3.5×10^{-2}) ; $[Co(NH₃)₅OP(O)₂(OR)]⁺$, R = Et (5.0 X 10⁻⁵), ⁿPr (3.1×10^{-5}) ; $[Co(NH₃)₅OPO₃]$ (8×10^{-7}) . In every case hydrolysis occurs at the Co(III) centre; no hydrolysis occurs at the P(V) centre.

Introduction

In a recent paper Norman [I] described the synthesis and alkaline hydrolysis of the diethylphosphato complex ion $[Co(NH_3)_5OP(O)(OEt)_2]^2^+$. Hydrolysis was followed spectrophotometrically (35 $^{\circ}$ C, I = 1.0 M, [OH⁻] = 2.5–7.5 × 10⁻³ M) and by $31P$ NMR (ambient temperature, pH = 11.3). The spectrophotometric rate data gave a good second order rate constant (k_{OH}) of 9.6 M⁻¹ s⁻¹, reaction (1) $(R = Et)$,

[Co(NH₃)₅OP(O)(OR)₂]²⁺+ OH⁻
$$
\longrightarrow
$$

[Co(NH₃)₅OH]²⁺+PO₂(OR)₂⁻ (1)

thereas the qualitative ³¹P data relate to a rate of $\sim 4 \times 10^{-6}$ s⁻¹ at pH 11.3, or to a k_{OH} value of \sim 2 X 10⁻³ M⁻¹ s⁻¹. No comment was made on the fact that the two sets of data apparently disagree. Both k_{OH} values, particularly that derived from the supposedly more precise spectrophotometric measurements, also differ substantially from those we have recently obtained for the alkaline hydrolysis of the similar dimethyl $(R = Me)$ and di-n-butyl $(R =$ Bu) complexes $(k_{OH} = 6.7 \times 10^{-2} \text{ M}^{-1} \text{ s}^{-1}$ for R = Ae; k_{OH} = 3.5 \times 10⁻² M⁻¹ s⁻¹ for R = Bu at 25.0 °C, $I = 1.0$ M) [2]. Therefore, as part of an undergraduate physical chemistry exercise we set two pairs of students the task of checking Norman's and our own

 k_{OH} values. This report describes their results and includes some new data $[3]$ on reaction (2)

 $[Co(NH₃)₅OP(OR)₃]$ ³⁺ + OH⁻ ---

$$
[Co(NH_3)_5OH]^2 + PO(OR)_3 \qquad (2)
$$

the first reported rate data on reaction (3)

$$
[Co(NH3)sOP(O)2(OR)]+ + OH- \longrightarrow
$$

$$
[Co(NH3)sOH]2+ + PO3(OR)2-
$$
 (3)

and a ^{31}P NMR study at 25 °C on reaction (4)

[Co(NH₃)₅OPO₃] + OH⁻
$$
\longrightarrow
$$

[Co(NH₃)₅OH]²⁺ + PO₄³⁻ (4)

for which our k_{OH} value is in agreement with earlier data obtained at higher temperatures [4]. The combined set of rate constants (k_{OH}) for these pentaammine cobalt(lI1) phosphato complexes make an interesting series, and extend the available range of such values for the alkaline hydrolysis of acido groups bound to cobalt(II1).

Experimental

¹H, ¹³C and ³¹P spectra were recorded on a Varian VXR 300 spectrometer operating at 299.903 (^1H) , 75.419 (^{13}C) and 121.405 (^{31}P) MHz and equipped with a 5 mm thermostatted $(25.0 \degree C)$ probe. Samples were made up in acidified D_2O (CF₃SO₃H) or 80% $H_2O:20\%$ D_2O (external H_3PO_4 standard). ³¹P kinetic data used H_2O as the solvent and an external H_3PO_4 standard in D_2O .

Preparations

The two complexes $[Co(NH_3)_5OP(OR)_3]$ $(CIO_4)_3$ ⁺ H_2O (R = Me, Et) were synthesised from freshly prepared $[Co(NH_3)_5OSO_2CF_3](CF_3SO_3)_2$ in a similar manner to that reported recently [5]. Anal. Calc. for $R = Me: C, 6.00; H, 4.36; N, 11.66$. Found: C, 6.02; H, 4.56; N, 11.38. Calc. for R= Et: C, 11.21; H, 5.02; N, 10.90. Found: C, 11.44; H, 5.10; N, 10.63%. ¹H NMR (δ): R = Me, 3.81(d); R = Et, 1.46(t), 4.08-

0 Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

(quin). ¹³C NMR (δ , dioxane): R = Me, 56.2. The triethylphosphato complex $(R = Et)$ was found to slowly revert to the aqua complex in the solid state; however the $R = Me$ complex appeared to be quite stable.

 $[Co(NH₃)₅OP(O)(OMe)₂](ClO₄)₂$ and $[Co(NH₃)₅$. $OP(O)(OBu)_2(CIO_4)_2 \cdot H_2O$ were prepared as described previously [2]. ¹H NMR (δ): R = Me, 3.60-(d); $R = Bu$, 0.90(t), 1.35(sextet), 1.61(quin), 3.88-(quart). ¹³C NMR (δ , dioxane): R = Me, 55.0; R = Bu. 13.5, 18.9,32.1.

 $[Co(NH₃)₅OP(O)(OEt)₂](ClO₄)(NO₃)$ and $[Co (NH₃)₅OP(O)₂(OEt)](ClO₄)·H₂O$ were prepared as follows. To 7.4 g of technical grade diethylphosphate (70% diethylphosphoric acid, 30% monoethylphosphoric acid) in 40 cm³ of sulpholane was added 2 g of triethylamine followed by 2.4 g of $[Co(NH₃)₅$ - $OSMe₂$](ClO₄)₃ [3]. The mixture was heated at 80 "c for 100 min and then diluted with water and loaded onto a column of Sephadex SP-C25 cationexchange resin. On elution with 0.1 M pyridinium acetate the purple band split into two and both fractions were eluted by increasing the pyridinium acetate concentration to 1 M. These were reduced to dryness by rotary evaporation. The faster moving fraction $(\sim 30\%)$ was crystallised as $[Co(NH₃)₅OP (O)_2(OEt)$]ClO₄ · H₂O by adding solid NaClO₄ · H₂O to a concentrated aqueous solution; it was recrystallised from hot water by cooling in an ice bath. *Anal.* Calc. C, 6.23; H, 5.75; N, 18.17. Found: C, 6.28; H, 5.88, N, 18.31%. ¹H NMR (δ): 1.21(t), 3.80-(quin). $31P$ NMR (δ , H₃PO₄): 12.55. The slower moving fraction was crystallised as $[Co(NH₃)₅OP (O)(OEt)_2$](ClO₄)(NO₃) by adding solid LiClO₄ and $LiNO₃·H₂O$ to a concentrated aqueous solution and scratching the sides of the beaker; it was similarly recrystallised from water. Anal. Calc. C, 10.5 ; H, 5.5 ; N, 18.3. Found: C, 10.3; H, 5.5; N, 18.3%. 'H NMR (δ): 1.26(t), 3.94(quin). ³¹P NMR (δ , H₃PO₄): 8.47.

A mixture of di- and mono- n-propylphosphate was prepared as follows [6]. To 560 g of n-propanol containing BF₃, at 0 \mathcal{C} was added with stirring 55 g of POCl₃. After 15 h 1 dm³ of water was added and the mixture reduced to a viscous oil by rotary evaporation. This oil was distilled under vacuum giving three fractions: (1) boiling point (b.p.) 20 $^{\circ}$ C (2 mmHg) ; (2) b.p. 120 °C (4 mmHg) ; (3) residue. The second and third fractions gave the following analytical data: C, 45.94; H, 9.13 and C. 34.13; H, 7.26% respectively, which are to be compared with the expected values for the tri-, di- and mono- propyl phosphate esters of C, 48.20, 39.78, 26.10 and H, 9.44, 7.79, 5.1 1%. From these data the third fraction was considered to contain substantial amounts of din-propylphosphate and this was used in the following preparations of $[Co(NH_3)_5OP(O)_2(OPr)]ClO_4$ and $[Co(NH₃)₅OP(O)(OPr)₂](ClO₄)(NO₃)$. To 3.87 g of the phosphate ester dissolved in 15 cm^3 of dimethyl-

sulfoxide was added 0.9 g of triethylamine and 3 g of $[Co(NH₃), OSMe₂](ClO₄)$ ₃. This mixture was heated at 80 \overline{C} for 2 h. The product was diluted with ethanol (100 cm³) and water (300 cm³), loaded onto a column of Sephadex SP-C25 cation-exchange resin and eluted with 0.1 M pyridinium acetate. Once the two purple products had separated the pyridinium acetate concentration was increased to 1 M and the bands collected. These fractions were reduced to dryness by rotary evaporation. $[Co(NH₃)₅OP(O)₂$. $(OPr)[ClO₄·H₂O was easily crystallised by adding$ solid NaClO₄ \cdot H₂O to a concentrated aqueous solution. It was recrystallised from warm water by cooling in an ice bath. Anal. Calc. C, 9.02; H, 6.05 ; N, 17.52. Found: C, 9.05; H, 5.69; N, 17.76%. 'H NMR (6): 0.89(t), 1.59(sextet), 3,70(quart). The more soluble di-n-propylphosphate complex proved more difficult to isolate but was finally obtained as $[Co(NH₃)₅OP(O)(OPr)₂](ClO₄)(NO₃)$ by adding LiClO₄ and LiNO₃ \cdot H₂O to a concentrated solution in water. This was similarly recrystallised from the minimum volume of water. Large purple-red crystals separated following addition of MeOH and EtOH and standing at room temperature over two days. Anal. Calc. C, 14.81; H, 6.01; N, 17.27. Found: C, 14.81; H, 6.04 ; N, 17.28% . ¹H NMR (δ) : $0.91(t)$, 1.63 . (sextet), 3.84 (quart), 13 C NMR (δ , dioxane): 10.7, 24.4,70.2.

 $[Co(NH₃)₅OPO₃]$ was prepared as described previously $[7]$ (³¹P NMR 14.47 versus 5.75 ppm for PO_4^3 , aqueous NaOH (0.1 M).

Kinetics

Spectrophotometric rate data were obtained using a Durrum D-110 stopped flow spectrophotometer interfaced to a Northstar Horizon computer. Data were treated using an OLIS kinetic fitting routine. ³¹P NMR rate data were collected on the Varian VXR 300 spectrometer by averaging 256. 512 or 1024 transients (pulse width 15 μ s; acquisition time 0.750 s; delay 0.250 s) and spacing the collections at appropriate time intervals. Integrated areas (I_t) were treated using conventional $ln(I_t)$ or $ln(I_\infty - I_t)$ versus time (t) plots.

Results and Discussion

In the following account the $Co(NH₃)₅$ moiety is represented by A_5Co .

The preparation and alkaline hydrolysis of the A_5C_0 -OP(OR)₃³⁺ complexes (R = Me, Et) follows an earlier report on $A_5Co-OP(0Me)_3^{3+}$ where rate constants for both the spontaneous and OH- catalysed reactions were given $(k_0 \sim 1.4 \times 10^{-4} \text{ s}^{-1})$; k_{OH} = 79 M⁻¹ s⁻¹, I = 1.0 M, 25 °C) [3]. Our value for $R = Me$ (Table 1) agrees with this k_{OH} value and extends the observed data to 0.1 M OH⁻. Apparently the rate law $k_{\text{obs}} = k_{\text{OH}}[\text{OH}^{-}]$ holds over this ex-

TABLE 1. Rate data for the alkaline hydrolysis of phosphate ester complexes at 25 °C and $I = 1.0$ M (NaClO₄)

Substrate $(Co(NH_3)_5 = A_5Co)$	Method ^a	$[OH^-]$ (M)	$rac{k_{\text{obs}}}{(s^{-1})}$	k_{OH} $(M^{-1} s^{-1})$
$A_5C_0-OP(OMe)_3^{3+}$	S	0.10	7.83	78.3
$A_5C_0 - OP(OEt)_3^{3+}$	S	0.10	4.45	44.5
A_5C_0 -OP(O)(OMe) ₂ ²⁺	S	1.00	6.67×10^{-2}	6.67×10^{-2}
A_5C_0 -OP(O)(OEt) ₂ ²⁺	S	1.00	4.85×10^{-2}	4.85×10^{-2}
	31 p	0.04	1.62×10^{-3}	4.05×10^{-2}
	31 _p	1.78×10^{-3}	7.60×10^{-5}	4.27×10^{-2}
A_5C_0 -OP(O)(OPr) ₂ ²⁺	S	1.00	3.5×10^{-2}	3.5×10^{-2}
	31p	0.05	1.52×10^{-3}	3.0×10^{-2}
$A_5C_0 - OP(O)(OBu)_2^2$ ⁺	S	1.00	3.52×10^{-2}	3.52×10^{-2}
$A_5Co-OP(O)_2(OEt)^+$	31p	1.00	5.0×10^{-5}	5.0×10^{-5}
$A_5Co-OP(O)_2(OPr)^+$	31 _p	1.00	3.1×10^{-5}	3.1×10^{-5}
A_5 Co-OPO ₃	31p	1.00	5.7×10^{-7}	5.7×10^{-7}

 ${}^{a}S$ = spectrophotometric; ${}^{31}P = {}^{31}P$ NMR measurements.

tended range, which implies that the acidity of coordinated NH₃ in these systems is not great $(K_a <$ 10^{-15}). (For a recent account of the S_N1(CB) mechanism see ref. 8). The $R = Et$ complex is about twice as slow to hydrolyse as the $R = Me$ complex. The $A_5Co-OP(OR)_2^{2+}$ complexes $(R = Me, Et,$ "Pr, "Bu) form a series of increasing alkyl chain length. They can be prepared from $[Co(NH₃)₅$ - $OSMe_2$ [(ClO₄)₃ or [Co(NH₃)₅OSO₂CF₃](CF₃SO₃)₂ in sulfolane or dimethylsulfoxide as solvent using the neat ester, or its sodium salt. In the preparations reported here the absence of the pure dialkyl ester $(R = Et, Pr)$ necessitated making a mixture of the diand mono-ester complexes, and separating them by ion-exchange chromatography. Elemental, and ¹H and ³¹P NMR analysis establish their purity. The A_5C_0 -OP(OR)₂²⁺ ions were found to hydrolyse slowly (overnight) in neutral and acidic aqueous solutions, and the reported rate for the spontaneous reaction of $\sim 2 \times 10^{-5}$ s⁻¹ (k₀) [1] appears to be reasonable. Their alkaline hydrolysis however is considerably slower than for the 3+ ions, with k_{OH} for A_5C_0 -OP(O)(OEt)₂²⁺ $(4.5 \times 10^{-2} \text{ M}^{-1} \text{ s}^{-1})$ being some 10³ smaller than for $A_5Co-OP(OEt)$ $(44.5 \text{ M}^{-1} \text{ s}^{-1})$. Also the series $\text{R} = \text{Me}$, Et, "Pr, "Bu show a decrease in k_{OH} with increasing chain length, with the limiting value appearing to be about 3.5 X 10^{-2} M⁻¹ s⁻¹. Our value of 4.5×10^{-2} M⁻¹ s⁻¹ for $A_5Co-OP(O)(OEt)₂²⁺$ means that the earlier value of 9.6 M^{-1} s⁻¹ (at 35 °C) reported by Norman [1] is incorrect. For these 2+ ions some difficulty was experienced in obtaining spectrophotometric data (in 1.0 M OH⁻) since the A_5 CoOH²⁺ product itself undergoes further hydrolysis to give CoO(OH) (see below). Thus of the spectrophotometric data **used** in the kinetic analyses only that obtained over the first 60-70 s was useful (\sim 3 $t_{1,2}$). However this problem was avoided with the ³¹P NMR data since subsequent

Fig. 1. ^{31}P data for the hydrolysis of (A) $[Co(NH₃)₅OP(O)$ - $(OEt)₂|(NO₃)(ClO₄)$ in 0.2 M triethylamine buffer, pH = 11.02, 0.8 M NaClO₄, 25.0 °C, data at 40 min intervals (acquisition time, 0.750 s; delay, 0.250 s; transients, 512; pulse width, 15 μs); (B) [Co(NH₃)₅OP(O)₂(OEt)](ClO₄) in 1.0 M NaOH, 25.0 °C, data at 50 min intervals (acquisition time, 0.750s; delay, 0.500s; transients 768; pulse width, 15 μ s).

decomposition had no effect on the $31P$ signals; good first order data were obtained over extended periods using both the reactant and product signals. An example of this is given in Fig. $1(A)$. The $31P$ and ¹H NMR data also showed the complete absence of $PO₃(OR)²$, $PO₄³⁻$ and ROH products implying that no P-OR cleavage occurs in the coordinated or released ligand under the experimental conditions.

The A_5C_0 -OP(O)₂(OR)⁺ complexes likewise are about 10^3 times slower to hydrolyse than the A₅Co- $OP(O)(OR)_2^2$ ⁺ ions (Table 1). Here precipitation of CoO(OH) occurs to such an extent as to prevent the collection of spectrophotometric rate data. The $31P$ data however gave excellent first order traces. An example of this is shown in Fig. $1(B)$. A subsequent experiment using $[Co(NH₃)₅OH₂](ClO₄)₃$ in 1.0 M OH^- showed that $CoO(OH)$ is rapidly formed from A_5 CoOH²⁺ under such conditions. Thus it appears that $A_5Co-OP(O)_2(OR)^+$ does not directly give rise to CoO(OH); it is formed from the initially formed $A₅CoOH²⁺$ product. These data also show that CoO(OH) does not catalyse the hydrolysis reaction and that no paramagnetic $Co(II)$ species are formed under the alkaline conditions since the ^{31}P and ^{13}C signals remained sharp and intense throughout the reaction.

Hydrolysis of $A_5Co-OPO_3$ is much slower again, with k_{OH} being $\sim 10^2$ times smaller than for the 1+ ions. This reaction has previously been studied at higher temperatures (60, 72.2, 82.4 °C) by Lincoln

et al. using a ³²P-labelling method [4]. Our k_{OH} value of 5.7×10^{-7} s⁻¹ in 1.0 M OH⁻ agrees well with their data extrapolated to 25 °C (4.6 \times 10⁻⁷ s⁻¹). However, they suggested a concomitant hydrolysis pathway involving loss of $NH₃$; our data indicates this not to be the case since no additional $3^{1}P$ signal corresponding to $[Co(NH₃)₄(OH)(OPO₃)]$ ⁻ was seen. Indeed, it can be inferred from our 31P results that all $[Co(NH₃)₅X]ⁿ⁺$ complexes are very stable towards loss of coordinated ammonia and eventual formation of CoO(OH); only $[Co(NH₃)₅OH]²⁺$ is unstable in this respect.

The combined data of Table 1 show that the alkaline hydrolysis of monodentate phosphate ligands bound to A_5Co^{3+} extends over a 10^8 -fold range of reactivity.

References

- 1 P. R. Norman, *Inorg. Chim. Acta*, 145 (1988) 7.
- *2 N.* E. Brasch, D. A. Buckingham, C. R. Clark and K. S. Finnie,Inorg. *Chem., 28* (1989) *3386.*
- *3 N.* E. Dixon, W. G. Jackson, W. Marty and A. M. Sargeson, *Inorg. Chem., 21 (1982) 688.*
- *4 S.* F. Lincoln, J. Jayne and J. P. Hunt, Inorg. Chem., 8 (1969) 2267.
- 5 N. E. Dixon, W. G. Jackson, M. J. Lancaster, G. A. Lawrence and A. M. Sargeson, *Inorg. Chem.*, 20 (1981) 470.
- 6 W. Vilsmeier, *Chem. Abstr., 69 (1968) 76632~.*
- *7* W. Schmidt and H. Taube, Inorg. *Chem., 2 (1963) 698.*
- *8* M. L. Tobe, *A&. fnorg. Bioinorg. Mech.. 2 (1983) 1.*