The Alkaline Hydrolysis of some Phosphato Pentaammine Cobalt(III) Complexes

A. J. ROGERS, L. SARSON, R. BATCHELOR, S. CULBERT, C. R. CLARK and D. A. BUCKINGHAM* Department of Chemistry, University of Otago, P.O. Box 56, Dunedin (New Zealand) (Received January 17, 1990)

Abstract

Second-order rate constants $(k_{OH} (M^{-1} s^{-1}), 25.0 °C, I = 1.0 M (NaClO_4))$ for the alkaline hydrolysis of the following complex ions are reported: $[Co(NH_3)_5OP(OR)_3]^{3+}$, R = Me (78.3), Et (44.5); $[Co(NH_3)_5OP(O)(OR)_2]^{2+}$, R = Me (6.7 × 10⁻²), Et (4.9 × 10⁻²), ⁿPr (3.5 × 10⁻²), ⁿBu (3.5 × 10⁻²); $[Co(NH_3)_5OP(O)_2(OR)]^+$, R = Et (5.0 × 10⁻⁵), ⁿPr (3.1 × 10⁻⁵); $[Co(NH_3)_5OPO_3]$ (8 × 10⁻⁷). In every case hydrolysis occurs at the Co(III) centre; no hydrolysis occurs at the P(V) centre.

Introduction

In a recent paper Norman [1] described the synthesis and alkaline hydrolysis of the diethylphosphato complex ion $[Co(NH_3)_5OP(O)(OEt)_2]^{2+}$. Hydrolysis was followed spectrophotometrically (35 °C, I = 1.0 M, $[OH^-] = 2.5 - 7.5 \times 10^{-3}$ M) and by ³¹P NMR (ambient temperature, pH = 11.3). The spectrophotometric rate data gave a good second order rate constant (k_{OH}) of 9.6 M⁻¹ s⁻¹, reaction (1) (R = Et),

$$[Co(NH_3)_5 OP(O)(OR)_2]^{2+} + OH^- \longrightarrow [Co(NH_3)_5 OH]^{2+} + PO_2(OR)_2^- (1)$$

whereas the qualitative ³¹P data relate to a rate of $\sim 4 \times 10^{-6}$ s⁻¹ at pH 11.3, or to a k_{OH} value of $\sim 2 \times 10^{-3}$ M⁻¹ s⁻¹. No comment was made on the fact that the two sets of data apparently disagree. Both k_{OH} values, particularly that derived from the supposedly more precise spectrophotometric measurements, also differ substantially from those we have recently obtained for the alkaline hydrolysis of the similar dimethyl (R = Me) and di-n-butyl (R = ⁿBu) complexes ($k_{OH} = 6.7 \times 10^{-2}$ M⁻¹ s⁻¹ for R = Me; $k_{OH} = 3.5 \times 10^{-2}$ M⁻¹ s⁻¹ for R = Bu at 25.0 °C, I = 1.0 M) [2]. Therefore, as part of an undergraduate physical chemistry exercise we set two pairs of students the task of checking Norman's and our own

 k_{OH} values. This report describes their results and includes some new data [3] on reaction (2)

 $[Co(NH_3)_5OP(OR)_3]^{3+} + OH^- \rightarrow$

$$[Co(NH_3)_5OH]^{2+} + PO(OR)_3$$
 (2)

the first reported rate data on reaction (3)

$$[Co(NH_3)_5 OP(O)_2(OR)]^+ + OH^- \longrightarrow$$
$$[Co(NH_3)_5 OH]^{2+} + PO_3(OR)^{2-} \qquad (3)$$

and a ³¹P NMR study at 25 °C on reaction (4)

$$[Co(NH_3)_5 OPO_3] + OH^- \longrightarrow$$
$$[Co(NH_3)_5 OH]^{2+} + PO_4^{3-} \qquad (4)$$

for which our k_{OH} value is in agreement with earlier data obtained at higher temperatures [4]. The combined set of rate constants (k_{OH}) for these pentaammine cobalt(III) phosphato complexes make an interesting series, and extend the available range of such values for the alkaline hydrolysis of acido groups bound to cobalt(III).

Experimental

¹H, ¹³C and ³¹P spectra were recorded on a Varian VXR 300 spectrometer operating at 299.903 (¹H), 75.419 (¹³C) and 121.405 (³¹P) MHz and equipped with a 5 mm thermostatted (25.0 °C) probe. Samples were made up in acidified D_2O (CF₃SO₃H) or 80% H_2O :20% D_2O (external H_3PO_4 standard). ³¹P kinetic data used H_2O as the solvent and an external H_3PO_4 standard in D_2O .

Preparations

The two complexes $[Co(NH_3)_5OP(OR)_3](CIO_4)_3$ · H₂O (R = Me, Et) were synthesised from freshly prepared $[Co(NH_3)_5OSO_2CF_3](CF_3SO_3)_2$ in a similar manner to that reported recently [5]. *Anal.* Calc. for R = Me: C, 6.00; H, 4.36; N, 11.66. Found: C, 6.02; H, 4.56; N, 11.38. Calc. for R = Et: C, 11.21; H, 5.02; N, 10.90. Found: C, 11.44; H, 5.10; N, 10.63%. ¹H NMR (δ): R = Me, 3.81(d); R = Et, 1.46(t), 4.08-

© Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

(quin). ¹³C NMR (δ , dioxane): R = Me, 56.2. The triethylphosphato complex (R = Et) was found to slowly revert to the aqua complex in the solid state; however the R = Me complex appeared to be quite stable.

[Co(NH₃)₅OP(O)(OMe)₂](ClO₄)₂ and [Co(NH₃)₅-OP(O)(OBu)₂](ClO₄)₂·H₂O were prepared as described previously [2]. ¹H NMR (δ): R = Me, 3.60-(d): R = Bu, 0.90(t), 1.35(sextet), 1.61(quin), 3.88-(quart). ¹³C NMR (δ, dioxane): R = Me, 55.0; R = Bu, 13.5, 18.9, 32.1.

 $[Co(NH_3)_5OP(O)(OEt)_2](ClO_4)(NO_3)$ and [Co-(NH₃)₅OP(O)₂(OEt)](ClO₄)·H₂O were prepared as follows. To 7.4 g of technical grade diethylphosphate (70% diethylphosphoric acid, 30% monoethylphosphoric acid) in 40 cm³ of sulpholane was added 2 g of triethylamine followed by 2.4 g of [Co(NH₃)₅- $OSMe_2[(ClO_4)_3 [3]]$. The mixture was heated at 80 loaded onto a column of Sephadex SP-C25 cationexchange resin. On elution with 0.1 M pyridinium acetate the purple band split into two and both fractions were eluted by increasing the pyridinium acetate concentration to 1 M. These were reduced to dryness by rotary evaporation. The faster moving fraction (~30%) was crystallised as [Co(NH₃)₅OP-(O)₂(OEt)]ClO₄·H₂O by adding solid NaClO₄·H₂O to a concentrated aqueous solution; it was recrystallised from hot water by cooling in an ice bath. Anal. Calc. C, 6.23; H, 5.75; N, 18.17. Found: C, 6.28; H, 5.88, N, 18.31%. ¹H NMR (δ): 1.21(t), 3.80-(quin). ³¹P NMR (δ , H₃PO₄): 12.55. The slower moving fraction was crystallised as [Co(NH₃)₅OP-(O)(OEt)₂](ClO₄)(NO₃) by adding solid LiClO₄ and LiNO₃·H₂O to a concentrated aqueous solution and scratching the sides of the beaker; it was similarly recrystallised from water. Anal. Calc. C, 10.5; H, 5.5; N, 18.3. Found: C, 10.3; H, 5.5; N, 18.3%. ¹H NMR (δ): 1.26(t), 3.94(quin). ³¹P NMR (δ , H₃PO₄): 8.47.

A mixture of di- and mono- n-propylphosphate was prepared as follows [6]. To 560 g of n-propanol containing BF₃, at 0 °C was added with stirring 55 g of POCl₃. After 15 h 1 dm³ of water was added and the mixture reduced to a viscous oil by rotary evaporation. This oil was distilled under vacuum giving three fractions: (1) boiling point (b.p.) 20 °C (2 mmHg); (2) b.p. 120 °C (4 mmHg); (3) residue. The second and third fractions gave the following analytical data: C, 45.94; H, 9.13 and C, 34.13; H, 7.26% respectively, which are to be compared with the expected values for the tri-, di- and mono- propyl phosphate esters of C, 48.20, 39.78, 26.10 and H, 9.44, 7.79, 5.11%. From these data the third fraction was considered to contain substantial amounts of din-propylphosphate and this was used in the following preparations of [Co(NH₃)₅OP(O)₂(OPr)]ClO₄ and [Co(NH₃)₅OP(O)(OPr)₂](ClO₄)(NO₃). To 3.87 g of the phosphate ester dissolved in 15 cm³ of dimethyl-

sulfoxide was added 0.9 g of tricthylamine and 3 g of $[Co(NH_3)_5OSMe_2](ClO_4)_3$. This mixture was heated at 80 $^{\circ}$ C for 2 h. The product was diluted with ethanol (100 cm³) and water (300 cm³), loaded onto a column of Sephadex SP-C25 cation-exchange resin and eluted with 0.1 M pyridinium acetate. Once the two purple products had separated the pyridinium acetate concentration was increased to 1 M and the bands collected. These fractions were reduced to dryness by rotary evaporation. [Co(NH₃)₅OP(O)₂-(OPr)]ClO₄·H₂O was easily crystallised by adding solid NaClO₄·H₂O to a concentrated aqueous solution. It was recrystallised from warm water by cooling in an ice bath. Anal. Calc. C, 9.02; H, 6.05; N, 17.52. Found: C, 9.05; H, 5.69; N, 17.76%. ¹H NMR (δ): 0.89(t), 1.59(sextet), 3.70(quart). The more soluble di-n-propylphosphate complex proved more difficult to isolate but was finally obtained as $[Co(NH_3)_5OP(O)(OPr)_2](ClO_4)(NO_3)$ by adding LiClO₄ and LiNO₃·H₂O to a concentrated solution in water. This was similarly recrystallised from the minimum volume of water. Large purple-red crystals separated following addition of MeOH and EtOH and standing at room temperature over two days. Anal. Calc. C, 14.81; H, 6.01; N, 17.27. Found: C, 14.81; H, 6.04; N, 17.28%. ¹H NMR (δ): 0.91(t), 1.63-(sextet), 3.84(quart). ¹³C NMR (δ , dioxane): 10.7, 24.4, 70.2.

[Co(NH₃)₅OPO₃] was prepared as described previously [7] (³¹P NMR 14.47 versus 5.75 ppm for PO_4^{3-} , aqueous NaOH (0.1 M).

Kinetics

Spectrophotometric rate data were obtained using a Durrum D-110 stopped flow spectrophotometer interfaced to a Northstar Horizon computer. Data were treated using an OLIS kinetic fitting routine. ³¹P NMR rate data were collected on the Varian VXR 300 spectrometer by averaging 256, 512 or 1024 transients (pulse width 15 μ s; acquisition time 0.750 s; delay 0.250 s) and spacing the collections at appropriate time intervals. Integrated areas (I_t) were treated using conventional $\ln(I_t)$ or $\ln(I_{\infty} - I_t)$ versus time (t) plots.

Results and Discussion

In the following account the $Co(NH_3)_5$ moiety is represented by A_5Co .

The preparation and alkaline hydrolysis of the $A_5Co-OP(OR)_3^{3+}$ complexes (R = Me, Et) follows an earlier report on $A_5Co-OP(OMe)_3^{3+}$ where rate constants for both the spontaneous and OH⁻catalysed reactions were given ($k_o \sim 1.4 \times 10^{-4} \text{ s}^{-1}$; $k_{OH} = 79 \text{ M}^{-1} \text{ s}^{-1}$, I = 1.0 M, 25 °C) [3]. Our value for R = Me (Table 1) agrees with this k_{OH} value and extends the observed data to 0.1 M OH⁻. Apparently the rate law $k_{obs} = k_{OH}[OH^-]$ holds over this ex-

TABLE 1. Rate data for the alkaline hydrolysis of phosphate ester complexes at 25 $^{\circ}$ C and I = 1.0 M (NaClO₄)

Substrate $(Co(NH_3)_5 = A_5Co)$	Method ^a	[OH ⁻] (M)	k_{obs} (s ⁻¹)	$\frac{k_{OH}}{(M^{-1} s^{-1})}$
$A_5Co-OP(OMe)_3^{3+}$	S	0.10	7.83	78.3
$A_5Co-OP(OEt)_3^{3+}$	S	0.10	4.45	44.5
$A_5Co-OP(O)(OMe)_2^{2+}$	S	1.00	6.67×10^{-2}	6.67×10^{-2}
$A_5Co-OP(O)(OEt)_2^{2+}$	S	1.00	4.85×10^{-2}	4.85×10^{-2}
	31 p	0.04	1.62×10^{-3}	4.05×10^{-2}
	³¹ P	1.78×10^{-3}	7.60 × 10 ⁻⁵	4.27×10^{-2}
A_5 Co-OP(O)(OPr)2 ²⁺	S	1.00	3.5×10^{-2}	3.5×10^{-2}
	31 p	0.05	1.52×10^{-3}	3.0×10^{-2}
$A_5Co-OP(O)(OBu)_2^{2+}$	S	1.00	3.52×10^{-2}	3.52×10^{-2}
$A_5Co-OP(O)_2(OEt)^+$	³¹ P	1.00	5.0×10^{-5}	5.0×10^{-5}
$A_5Co-OP(O)_2(OPr)^+$	31 P	1.00	3.1×10^{-5}	3.1×10^{-5}
A ₅ Co-OPO ₃	31 _P	1.00	5.7 × 10 ⁻⁷	5.7 × 10 ⁷

^aS = spectrophotometric; ${}^{31}P = {}^{31}P$ NMR measurements.

tended range, which implies that the acidity of coordinated NH₃ in these systems is not great ($K_{\rm a}$ < 10^{-15}). (For a recent account of the $S_N l(CB)$ mechanism see ref. 8). The R = Et complex is about twice as slow to hydrolyse as the R = Me complex. The $A_5Co-OP(OR)_2^{2+}$ complexes (R = Me, Et, ⁿPr, ⁿBu) form a series of increasing alkyl chain length. They can be prepared from $[Co(NH_3)_5]$. $OSMe_2[(ClO_4)_3 \text{ or } [Co(NH_3)_5OSO_2CF_3](CF_3SO_3)_2$ in sulfolane or dimethylsulfoxide as solvent using the neat ester, or its sodium salt. In the preparations reported here the absence of the pure dialkyl ester (R = Et, Pr) necessitated making a mixture of the diand mono-ester complexes, and separating them by ion-exchange chromatography. Elemental, and ¹H and ³¹P NMR analysis establish their purity. The $A_5Co-OP(OR)_2^{2+}$ ions were found to hydrolyse slowly (overnight) in neutral and acidic aqueous solutions, and the reported rate for the spontaneous reaction of $\sim 2 \times 10^{-5} \text{ s}^{-1} (k_0)$ [1] appears to be reasonable. Their alkaline hydrolysis however is considerably slower than for the 3+ ions, with k_{OH} for A₅Co-OP(O)(OEt)₂²⁺ (4.5 × 10⁻² M⁻¹ s⁻¹) being some 10³ smaller than for A₅Co-OP(OEt)₃³⁺ (44.5 M^{-1} s⁻¹). Also the series R = Me, Et, ⁿPr, ⁿBu show a decrease in k_{OH} with increasing chain length, with the limiting value appearing to be about 3.5×10^{-2} M⁻¹ s⁻¹. Our value of 4.5×10^{-2} M⁻¹ s⁻¹ for $A_5Co-OP(O)(OEt)_2^{2+}$ means that the earlier value of 9.6 M^{-1} s⁻¹ (at 35 °C) reported by Norman [1] is incorrect. For these 2+ ions some difficulty was experienced in obtaining spectrophotometric data (in 1.0 M OH⁻) since the A₅CoOH²⁺ product itself undergoes further hydrolysis to give CoO(OH) (see below). Thus of the spectrophotometric data used in the kinetic analyses only that obtained over the first 60-70 s was useful (~3 $t_{1/2}$). However this problem was avoided with the ³¹P NMR data since subsequent

Fig. 1. ³¹P data for the hydrolysis of (A) $[Co(NH_3)_5OP(O)-(OEt)_2](NO_3)(ClO_4)$ in 0.2 M triethylamine buffer, pH = 11.02, 0.8 M NaClO_4, 25.0 °C, data at 40 min intervals (acquisition time, 0.750 s; delay, 0.250 s; transients, 512; pulse width, 15 μ s); (B) $[Co(NH_3)_5OP(O)_2(OEt)](ClO_4)$ in 1.0 M NaOH, 25.0 °C, data at 50 min intervals (acquisition time, 0.750s; delay, 0.500s; transients 768; pulse width, 15 μ s).

decomposition had no effect on the ³¹P signals; good first order data were obtained over extended periods using both the reactant and product signals. An example of this is given in Fig. 1(A). The ³¹P and ¹H NMR data also showed the complete absence of $PO_3(OR)^{2-}$, PO_4^{3-} and ROH products implying that no P-OR cleavage occurs in the coordinated or released ligand under the experimental conditions.

The $A_5CO-OP(O)_2(OR)^+$ complexes likewise are about 10^3 times slower to hydrolyse than the A₅Co- $OP(O)(OR)_2^{2+}$ ions (Table 1). Here precipitation of CoO(OH) occurs to such an extent as to prevent the collection of spectrophotometric rate data. The ³¹P data however gave excellent first order traces. An example of this is shown in Fig. 1(B). A subsequent experiment using $[Co(NH_3)_5OH_2](ClO_4)_3$ in 1.0 M OH⁻ showed that CoO(OH) is rapidly formed from A₅CoOH²⁺ under such conditions. Thus it appears that $A_5Co-OP(O)_2(OR)^+$ does not directly give rise to CoO(OH); it is formed from the initially formed A₅CoOH²⁺ product. These data also show that CoO(OH) does not catalyse the hydrolysis reaction and that no paramagnetic Co(II) species are formed under the alkaline conditions since the ³¹P and ¹³C signals remained sharp and intense throughout the reaction.

Hydrolysis of $A_5Co-OPO_3$ is much slower again, with k_{OH} being $\sim 10^2$ times smaller than for the 1+ ions. This reaction has previously been studied at higher temperatures (60, 72.2, 82.4 °C) by Lincoln et al. using a ³²P-labelling method [4]. Our k_{OH} value of 5.7×10^{-7} s⁻¹ in 1.0 M OH⁻ agrees well with their data extrapolated to 25 °C (4.6 × 10⁻⁷ s⁻¹). However, they suggested a concomitant hydrolysis pathway involving loss of NH₃; our data indicates this not to be the case since no additional ³¹P signal corresponding to [Co(NH₃)₄(OH)(OPO₃)]⁻ was seen. Indeed, it can be inferred from our ³¹P results that all [Co(NH₃)₅X]ⁿ⁺ complexes are very stable towards loss of coordinated ammonia and eventual formation of CoO(OH); only [Co(NH₃)₅OH]²⁺ is unstable in this respect.

The combined data of Table 1 show that the alkaline hydrolysis of monodentate phosphate ligands bound to $A_5 \text{Co}^{3+}$ extends over a 10^8 -fold range of reactivity.

References

- 1 P. R. Norman, Inorg. Chim. Acta, 145 (1988) 7.
- 2 N. E. Brasch, D. A. Buckingham, C. R. Clark and K. S. Finnie, *Inorg. Chem.*, 28 (1989) 3386.
- 3 N. E. Dixon, W. G. Jackson, W. Marty and A. M. Sargeson, *Inorg. Chem.*, 21 (1982) 688.
- 4 S. F. Lincoln, J. Jayne and J. P. Hunt, Inorg. Chem., 8 (1969) 2267.
- 5 N. E. Dixon, W. G. Jackson, M. J. Lancaster, G. A. Lawrence and A. M. Sargeson, *Inorg. Chem.*, 20 (1981) 470.
- 6 W. Vilsmeier, Chem. Abstr., 69 (1968) 76632c.
- 7 W. Schmidt and H. Taube, Inorg. Chem., 2 (1963) 698.
- 8 M. L. Tobe, Adv. Inorg. Bioinorg. Mech., 2 (1983) 1.