Preparation of a $Rh-SnCl₂-Rh$ bridged A-frame complex, and the reversible reaction with CO and chloride to form the corresponding $SnCl₃$ complex

Alan R. Sanger

Coal and Hydrocarbon Processing, Alberta Research Council, P.O. Bag 1310, Devon, Alta., TOC IEO (Canada)

(Received September 4, 1991)

Abstract

Reaction of SnCl₂.2H₂O with $[Rh_2Cl_2(CO)_2(\mu$ **-dppm)₂ occurs to form** $[Rh_2(\mu$ **-Cl)(** μ **-SnCl₂)(CO)₂(** μ **-dppm)₂]Cl. Reaction of this complex with CO causes a sequence of reactions resulting in the displacement of the tin ligand** and the formation of $[Rh_2(\mu\text{-Cl})(CO)_2(\mu\text{-CO})(\mu\text{-dppm})_2][SnCl_3]$.

Introduction

An extensive variety of complexes containing transition metal-Group 14 metal bonds is now known [l, 21. The hydrogenation or hydroformylation catalytic activity of trihalogenostannio complexes of platinum group metals is frequently superior to that of the corresponding halogeno complexes [3, 4]. Binuclear dppm-bridged (dppm is bis(diphenylphosphino) methane; dpam is the corresponding diarsine) A-frame complexes of rhodium(I) are catalytically active for hydrogenation [5-71, hydroformylation [5, 71 and the water gas shift reaction $[5, 7, 8]$. Consequently it was considered appropriate to investigate the reactions of SnCl₂ with $\left[\text{Rh}_2\text{Cl}_2(\text{CO})_2(\mu\text{-dppm})_2\right]$ (1), $\left[\text{Rh}_2(\mu\text{-dppm})_2\right]$ Cl)(CO)₂(μ -CO)(μ -dppm)₂][BPh₄] (2) or the diarsine analogues.

Experimental

All reactions were performed in dry, oxygen-free solvents under an atmosphere of nitrogen or carbon monoxide. Complexes **1** and 2, and the diarsine and bromo analogues, were prepared using procedures reported in the literature [9, 10]. Spectra were recorded using the following instruments: IR, Perkin-Elmer 283; NMR, Bruker WP80 (CD₂Cl₂ or $(CD_3)_2$ CO at -80 "C). Conductivities were measured using a Radiometer CDM2e conductivity meter.

Preparation of $[Rh_2(\mu-Cl)(\mu-SnCl_2)(CO)_2(\mu-dppm)_2]Cl$

Under an atmosphere of N_2 , a mixture of 1 (0.435) g, 0.395 mmol) and SnCl, **.2H,O** (0.182 g, 0.807 mmol) in dichloromethane (50 ml) was stirred, while methanol (10 ml) was added slowly. The reagents dissolved to form a dark red solution, from which a red-brown powder slowly separated as the bulk of the solvent was reduced. The product was recrystallized from $CH₂Cl₂/$ MeOH to give, as red-brown crystals (78%), $\lceil Rh_2(\mu -$ Cl) $(\mu\text{-}SnCl_2)(CO)_2(\mu\text{-}dppm)_2$ [Cl. *Anal.* Found: C, 47.1; H, 3.4; Cl, 10.6. Calc.: C, 48.4; H, 3.4; Cl, 11.0%. The complex is a 1:1 electrolyte in solution in acetone (A_M) 62 Ω cm⁻¹ M⁻¹). Crystals of the complex are stable in air for periods in excess of one year.

The analogous dpam complex can be prepared by a similar procedure, as a purple-brown powder (87%). Anal. Found: C, 41.6; H, 2.9; Cl, 10.0%; M (CH₂Br₂) solution), 1467. Calc.: C, 42.6; H, 3.0; Cl, 9.7%; M, 1467.

Preparation of $[Rh_2(\mu-CI)(CO)_2(\mu-CO)(\mu-dppm)_2]$ $[SnCl₃]$

When a similar reaction was performed under an atmosphere of CO the initially red-orange solution became golden. The solvent was gradually reduced in bulk, and $\left[Rh_2(\mu\text{-Cl})(CO)_2(\mu\text{-CO})(\mu\text{-dppm})_2\right][\text{SnCl}_3]$

precipitated as yellow crystals (72%). *Anal.* Found: C, 47.7; H, 3.3; Cl, 11.4%; M (CH,Br, solution), 1256. Calc.: C, 48.2; H, 3.3; Cl, 10.8%; M, 1319. The complex is a 1:1 electrolyte in solution in acetone ($\Lambda_{\rm M}$ 113 Ω) cm⁻¹ M⁻¹) or dichloromethane (Λ_M 71 Ω cm⁻¹ M⁻¹).

Reversible reaction of $[Rh_2(\mu\text{-}Cl)(\mu\text{-}SnCl_2)(CO)_2$ *-* $(\mu$ -dppm)₂]Cl with CO

solution of $[Rh_2(\mu\text{-Cl})(\mu\text{-SnCl}_2)(CO)_2(\mu\text{-}$ \mathbf{A} $dppm)$, Cl in a mixture of $CH₂Cl₂$ and $CH₃OH$ changed from red-orange to yellow upon reaction with CO. Slow evaporation of solvent gave yellow crystals of $[Rh₂(\mu$ -Cl $)(CO)₂(\mu$ -CO $)(\mu$ -dppm $)₂$ [SnCl₃].

When a solution of the latter complex was stirred under a stream of N_2 , the colour slowly became darker and, after a period of hours, the former complex was recovered.

Results and discussion

When an equimolar amount of $SnCl₂·2H₂O$ is added to a solution of 1 in a mixture of CH_2Cl_2 and CH_3OH , the 1:1 electrolyte $[Rh_2(\mu\text{-}Cl)(\mu\text{-}SnCl_2)(CO)_2(\mu\text{-}Cl_2)$ $\langle \text{dppm} \rangle$ ₂]Cl is formed in high yield (eqn. (1)). The IR spectrum of the complex exhibits only terminal carbonyl bands (1982(vs), 1973(vs) cm⁻¹). The ³¹P NMR of a solution of the complex in CD_2Cl_2 or $(CD_3)_2CO$ (-80 °C) is second order, and is not that expected for $\lceil Rh_2(\mu-$ Cl)(CO)₂(μ -dppm)₂]⁺ [10]. The parameters (CD₂Cl₂: δ_P 25.9 ppm (versus external H₃PO₄), $|U + U|_{RhP}$ 106 Hz; $(CD_3)_2 CO$: $\delta_P 24.7$ ppm, $|J+J|_{RhP} 106$ Hz) demonstrate that all phosphorus nuclei are equivalent, and that the Rh-Rh interaction is non-bonding [10]. Satellites are observed for the spectrum in either solvent which are consistent with coupling to 117 Sn and 119 Sn, but not all separate satellites for coupling to each isotope are unequivocably discerned $(^{2}J_{\text{snP}} \sim 114 \text{ Hz})$ (Fig. 1). On warming to -70 °C the signals become broader, and at -50 °C the spectrum becomes a very broad doublet with ill-resolved Sn-P satellites

For all phosphorus nuclei to be equivalent and coupled to tin the complex cation must have a tin-bridged structure. A SnCl,-bridged structure is both precedented [2] and consistent with all the spectroscopic data. The alternative structure, containing a $(\mu\text{-}SnCl)$ ligand and two terminal chloro ligands, would require the presence of a Rh-Rh bond, which is not consistent with the $31P$ NMR spectrum. Oxidative addition of HgCl, across only one Rh centre of complex **1** affords the $Rh(I)Rh(III)$ complex $[Rh_2Cl_3(\mu-HgCl)(CO)_2(\mu \langle \text{dppm} \rangle_2$ [11], demonstrating that spacing between the closer Rh centres of **1** can easily increase to accommodate such a large ligand. On the evidence of the analytical, spectroscopic and conductivity data, and by

Fig. 1. (a) ³¹P NMR (at -80 °C) of a solution of $\left[\text{Rh}_2(\mu-\text{Cl})(\mu-\text{Cl})\right]$ $SnCl₂)(CO)₂(\mu$ -dppm)₂]Cl in $(CD₃)₂CO$, under N₂ (chemical shift vs. 85% H_3PO_4). (b) Proposed coupling ${}^{2}J_{5nP}$.

comparison with the above precedents, it is concluded that the product of the reaction of 1 with $SnCl_2 \tcdot 2H_2O$ is $[Rh_2(\mu\text{-}Cl)(\mu\text{-}SnCl_2)(CO)_2(\mu\text{-}dppm)_2]Cl$, and that the cation has the structure illustrated.

$$
[Rh2Cl2(CO)2(\mu-dppm)2] + SnCl2·2H2O \longrightarrow
$$

\n
$$
[Rh2(\mu-Cl)(\mu-SnCl2)(CO)2(\mu-dppm)2]Cl + 2H2O \quad (1)
$$

When the reaction of $[Rh_2Cl_2(CO)_2(\mu$ -dppm)₂ with an equimolar or excess amount of $SnCl₂·2H₂O$ is performed under an atmosphere of CO, instead of N_2 , the product is again a 1:l electrolyte. However, the cation contains no tin ligand, but instead the $SnCl₃^$ anion is present (eqn. (2)). The IR spectrum of the product shows carbonyl bands at 2012(s, sh), 1983(vs) and $1872(s)$ cm⁻¹, characteristic of the A-frame cation 2 [10]. Metal ligand bands are at $359(w)$, $287(w)$ and $251(w-m)$ cm⁻¹. The anion SnCl₃⁻ exhibits bands close to 289 and 252 cm⁻¹, which are shifted to higher values upon coordination to a platinum-group metal [12, 13]. The ³¹P NMR spectrum $(-80 °C)$ shows only the second order spectrum characteristic of cation 2 [10]. On the basis of the analytical, spectroscopic and conductivity evidence, the product of the reaction under CO is shown to be $[Rh_2(\mu\text{-}Cl)(CO)_2(\mu\text{-}CO)(\mu\text{-}CO)]$ $dppm)_2$ [SnCl₃].

$$
[Rh2Cl2(CO)2(\mu-dppm)2] + CO + SnCl2 \cdot 2H2O \longrightarrow
$$

\n
$$
[Rh2(\mu-Cl)(CO)2(\mu-CO)(\mu-dppm)2][SnCl3] + 2H2O
$$
\n(2)

Even when a large excess of $SnCl₂·2H₂O$ was present, the only rhodium containing product formed was that of eqn. (2), in which only one chloro ligand has reacted to form a $SnCl₃$ ⁻ anion.

When a similar reaction was performed under CO with the bromo analogue of complex **1,** both addition of $SnCl₂$ and halogen exchange (Cl/Br) occurred, to form a mixture of products.

The $SnCl₂$ -bridged complex, above, reacts reversibly with CO to afford the same product as eqn. (2). The reaction is slow and sequential. The highly complex ³¹P NMR spectra taken during the reaction show transient signals due to one or more intermediates, the identities of which are unknown. Subsequently, signals due to $\left[\text{Rh}_2(\mu\text{-Cl})(\text{CO})_2(\mu\text{-CO})(\mu\text{-dppm})_2\right]\left[\text{SnCl}_3\right]$ predominate, and this complex can be isolated (eqn. (3)).

$$
[Rh_2(\mu\text{-Cl})(\mu\text{-SnCl}_2)(CO)_2(\mu\text{-dppm})_2]Cl + CO \implies 'Rh_2SnCl_4(CO)_3(\mu\text{-dppm})_2' \implies
$$

$$
[Rh_2(\mu\text{-Cl})(CO)_2(\mu\text{-CO})(\mu\text{-dppm})_2][SnCl_3] \quad (3)
$$

The above sequence of events is reversible. Bubbling N_2 through a solution of $[Rh_2(\mu\text{-Cl})(CO)_2(\mu\text{-CO})(\mu\text{-}CO)]$ $\langle \text{dppm} \rangle_2$ [SnCl₃] causes the solution to become redder, and the SnCl₂-bridged complex $[Rh_2(\mu$ -Cl $)(\mu$ - $SnCl₂)(CO)₂(\mu$ -dppm)₂]Cl is recovered in high yield.

Although reaction (3) is reversible, it is unlikely to be the straightforward displacement of bridging $SnCl₂$ with CO, for such a reaction would not give the complex transient spectra observed. The existence of both bonded and ionic tin species in rhodium-tin complexes is reasonable [14-17]. The straightforward dissociation reaction (4) has been proposed for diene [15],

$$
L_nRhSnCl_3 \rightleftharpoons L_nRh^+ + SnCl_3^- \tag{4}
$$

phosphite [16] and bidentate nitrogen heterocycle [17] complexes of rhodium. To date all attempts to exchange $SnCl₃^-$ or Cl⁻ anions of the products of reactions (1) or (2) with BPh_4^- , in solvents of high dielectric constant, have yielded only mixtures of products, consistent with

a system more complex than reaction (4). Reaction (3) therefore represents an unusual reversible reaction, in which a bridging tin ligand is transformed into a $SnCl₃$ anion, rather than simple ionization.

The reaction of only one terminal chloro (or bromo) ligand of a binuclear complex to form a $SnCl₃-$ complex is precedented. However, the binuclear complexes $[M_2Cl(SnCl_3)(\mu\text{-dppm})_2]$ (M = Pd [18], Pt [19]) react further with excess SnCl₂ readily to form $[M_2(SnCl_3)_2(\mu$ dppm),], in contrast to the system herein reported.

Acknowledgements

I thank W. Wade for assistance in obtaining the NMR spectra, and Drs R. McFarlane and S. Petrovic for valuable comments and discussions.

References

- **1 E. H. Brooks and R. J. Cross,** *Organomet* **Chem.** *Rev. A,* **6 (1970) 227.**
- **2 K. M. Mackay and B. K. Nicholson, in G. Wilkinson, F. G. A. Stone and E. W. Abel, (eds.),** *Comprehensive Organometallic Chemistry,* **Pergamon, Oxford, 1982, Ch. 43.**
- **3 B. R. James,** *Homogeneous Hydrogenation,* **Wiley, New York, 1973.**
- **4 C. Y. Hsu and M. Orchin,** *J. Am. Chem. Soc., 97 (1975) 3553; Y.* **Kawabata, T. Hayashi and I. Agata, I.** *Chem. Sot.,* **Chem. Commun., (1979) 462.**
- 5 C. P. Kubiak and R. Eisenberg, *J. Am. Chem. Soc., 102 (1980) 3637; C.* **P. Kubiak, C. Woodcock and R. Eisenberg,** *Inorg. Chem., 21 (1982) 2119.*
- **6 A. R. Sanger, Can. J.** *Chem., 60 (1982) 1363.*
- **7 T. M. Painter and A. R. Sanger, in J. W. Ward (ed.), Catalysis 1987, Proc.** *10th N. American Meet. Catalysis Society,* **Elsevier, Amsterdam, 1988, p. 491.**
- **8 B. R. Sutherland and M. Cowie,** *Orgonomefallics, 4 (1985) 1637.*
- **9 A. R. Sanger,.I. Chem. Sot., Dalton** *Trans.,* **(1977) 120; (1981) 228.**
- **10 J. T. Mague and A. R. Sanger, Inorg.** *Chem., 18 (1979) 2060.*
- **11 A. R. Sanger, Inorg.** *Chim. Acta, 99 (1985) 95.*
- **12 R. J. H. Clark, L. Maresca and P. J. Smith, J.** *Chem. Sot. A, (1970) 2687.*
- **13 D. F. Shriver and M. P. Johnson,** *Inorg. Chem., 6 (1967) 1265.*
- **14 A. L. Balch, H. Hope and F. E. Wood, J.** *Am. Chem. Sot., 107 (1985) 6936.*
- **15** *J.* **F. Young, R. D. Gillard and G. Wilkinson, /. Chem. Sot., (1964) 5176.**
- **16 R. Uson, L. A. Oro, J. Reyes, D. Carrnona and P. Lahuerta,** *Transition Met. Chem., 8 (1983) 46.*
- **17 V. Garcia, M. A. Garralda and L. Ibarlucea,** *Transition Met. Chem., IO (1985) 288.*
- **18 M. M. Olmstead, L. S. Benner, H. Hope and A. L. Balch, lnorg.** *Chim. Acm, 32 (1979) 193.*
- **19 M. C. Grossel, R. P. Moulding and K. R. Seddon,** *Inorg. Chim. Actu,* **64 (1982) L275.**