

Electrical conductivity of octakis(decyloxy)phthalocyaninato $copper(II)$

Kuninobu Kasuga*, Takuya Mihara, Tadahiro Nakao and Kazuhiro Takahashi *Depament of Chemistry, Faculty of Science, Shimane University, Matsue 690 (Japan)*

(Received April 8, **1991; revised September 2, 1991)**

Metallophthalocyanines which are insulators become semi- or metallic-conductors when partially oxidized by means of oxidants such as iodine, nitrosyl tetrafluoroborate (NOBF,) and nitrosyl hexafluorophosphate (NOP F_6) [1, 2].

To control the stacking layers of the complexes, polymer complexes of phthalocyaninatosilicon(IV) bridged by a halogen or an oxygen atom were prepared and showed good conductivities when partially oxidized [3, 41. Furthermore, metallophthalocyanines with hydrocarbon chains were prepared, and the property of their discotic mesophase was investigated [5]. Recently, it has become apparent that the conductivity is significantly influenced by the degree of overlap of the phthalocyanine rings as well as the distance between the rings [6].

We report here the conductivity of a partially oxidized phthalocyanine copper(I1) complex with long-chain decyloxy substituents the arrangement of which might be controlled by their fastener effect (Fig. 1).

Fig. 1. The CuPc(OC₁₀H₂₁)₈ complex; $R = C_{10}H_{21}$.

Experimental

Synthesis

4,5-Dicyano-1,2-bisdecyloxybenzene was prepared by a method similar to that described in the literature]71.

A mixture of 4,5-dicyano-1,2-bisdecyloxybenzene (2.0 g, 4.5 mmol), copper(I1) chloride dihydrate $(1.0 \text{ g}, 5.9 \text{ mmol})$, ethylene glycol (4 ml) and 1.8 diazabicyclo[5.4.0]undec-7-ene (1 ml) was heated at 180 "C for 5 h. The precipitates obtained were washed with ethanol. Then, the chloroform solution of the precipitates was poured onto an alumina column. Using chloroform as an eluent, a green solution was eluted out (yield 20%). Anal. Found: C, 73.25; H, 9.65; N, 5.91. Calc. for CuPc($OC_{10}H_{21}$)₈: C, 73.66; H, 9.71; N, 6.31%.

Partial oxidation and conductivity measurements

To a chloroform solution of the complex, an acetonitrile solution containing adequate amounts of $NOBF₄$ was added dropwise under a nitrogen atmosphere, and then the mixture was stirred at room temperature for 1 h. The doped complex was filtered and dried at room temperature. The degree of doping was determined by means of elemental analyses.

Conductivity measurements of pressed pellets were carried out with a two-probe method.

Results and discussion

It has been reported that oxidation on the central metal slightly affects the Q band, while ring oxidation extensively decreases the intensity of the Q band [8, 9]. During oxidation of $CuPc(OC_{10}H_{21})_8$ by $NOBF₄$, absorbance for the Q band (681 nm) decreased, and a new band appeared at 580 nm (the color of the solution changed from green to reddish purple), showing partial oxidation of the phthalocyanine ring (Fig. 2).

The conductivity of $CuPc(OC_{10}H_{21})_8$ at room temperature increased with the doping rate, but decreased with excess doping: log σ/S cm⁻¹ < -13 for $x=0$, -7.5 for $x=0.7$, and -8.8 for $x=1.0$, where **^X**is the degree of oxidation, i.e., CuPc- $(OC_{10}H_{21})_8(BF_4)_x$. This tendency is in agreement with that of the unsubstituted phthalocyanine complexes $[10]$. The conductivity of the doped copper (II) complexes increased with an increase of temperature, showing that they are semiconductors. The activation energy of the partially oxidized complex (e.g. $E_{\text{act}} = 0.15$ eV for $x = 0.7$) was lower than that of the undoped complex ($E_{\text{act}} = 0.78$ eV for $x = 0$).

^{*}Author to whom correspondence should be addressed.

Fig. 2. Electronic spectra of $CuPc(OC_{10}H_{21})_8$ in dichloromethane: $(-)$ CuPc $(OC_{10}H_{21})_8$; $(-)$ CuPc- $({\rm OC}_{10}H_{21})_8({\rm BF}_4)_{0.7}, \ (\cdots) {\rm CuPc}({\rm OC}_{10}H_{21})_8({\rm BF}_4)_{1.0}.$

The **conductivity of the powder samples of** $CuPc(OC_{10}H_{21})_8$ in which the complex might be **orderly stacked by the fastener effect of the longchain substituents is less than that of the unsubstituted phthalocyanine complexes or the cofacially joined polymeric phthalocyanine complexes 13,4]. However, by choosing the dopants or the peripheral substituents, this could become one of the methods used to control the stacking of macrocyclic complexes.**

Acknowledgement

This work was partially supported by Grant-in-Aid for Scientific Research No. 02453041 from the Ministry of Education, Science and Culture.

References

- **1** K. Yakushi, H. Yamakado, M. Yoshitake, N. Kosugi, H. Kuroda, T. Sugano, M. Kinoshita, A. Kawamoto and J. Tanaka, *Bull. Chem. Sot.* Jpn., 62 (1989) 687, and refs. therein.
- **2** T. J. Marks, Science, 227 (1985) 881, and refs. therein.
- 3 J. Metz, G. Pawlowski and M. Hanack, Z. Naturforsch. *Ted B,* 38 (1983) 378.
- **4** J. G. Gaudiello, G. E. Kellogg, S. M. Tetrick and T. J. Marks, *J. Am. Chem. Soc., 111* (1989) 5259.
- **5** *C.* Piechocki, J. Simon, A. Skoulios, D. Guillon and P. Weber, *J. Am. Chem. Sot., 104 (1982) 5245.*
- **6** W. J. Pietro, T. J. Marks and M. A. Ratner, J. *Am. Chem. Sot., IO7 (1985) 5387.*
- **7** K. Ohta, L. Jacquemin, C. Sirlin, L. Bosio and J. Simon, New J. Chem., 12 (1988) 751.
- **8** J. F. Myeres, G. W. R. Canham and A. B. P. Lever, Inorg *Chem., 14 (1975) 461.*
- **9** A. E. Cahill and H. Taube, J. *Am. Chem. Sot., 73 (1951) 2847.*
- **10** *C.* J. Schramm, R. P. Scaringe, D. R. Stojakovic, B. M. Hoffman, J. A. Ibers and T. J. Marks, *J. Am. Chem. Sot., 102 (1980) 6702.*