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Abstract 

The molecular orbital energy parameters obtained 
from ab initio SCF MO Gaussian 82 computations on 
the series of deltahedral borane anions B,Hn2- (n = 5, 
6, 7, 8, 9, 10, 12) correspond more closely to D, 
deltahedral core bonding topology than to K, com- 
plete core bonding topology. However, core-surface 
mixing, as noted previously for icosahedral Bi2Hr2*-, 
raises the energies of all of the core molecular 
orbitals, except the lowest energy fully symmetric 
core orbital, to antibonding levels. For this reason 
the graph-theory derived model using K, complete 
core bonding topology gives the correct number of 
bonding and antibonding orbitals and hence the 
correct number of skeletal electrons for the delta- 
hedral boranes. Extension of this topological analysis 
to self-consistent molecular orbital computations on 
the perchloroborane anions B,Cl,2- (n = 6, 12) sug- 
gests that substitution of chlorine for hydrogen in 
the deltahedral boranes leads to more nearly delta- 
hedral core bonding as well as a weakening of core 
bonding relative to surface bonding in accord with 
the expected electron withdrawing tendencies of 
chlorine relative to hydrogen. In addition, delta- 
hedral borane anion computations using Gaussian 
orbitals rather than Slater orbitals lead to core 
bonding topology which is more nearly deltahedral 
rather than complete and weaker core bonding 
relative to surface bonding in accord with the more 
rapid decrease in the electron density of Gaussian 
orbitals at increasing distances relative to Slater 
orbitals. 

close-borane anions, also of unusual chemical 
stability of which B,Hn2- (6 <n < 12) are the 
prototypes [2]. These anions have structures that 
are based on closed polyhedra with only triangular 
faces and therefore such polyhedra are often called 
deltahedra. The unusual stability of these co-called 
electron-deficient deltahedral boranes has led to the 
development of the concept of three-dimensional 
aromaticity [3]. A qualitative graph-theory derived 
model for chemical bonding in such delocalized 
systems [4] demonstrates the analogy between the 
aromaticity in the planar polygonal hydrocarbons 
and that in deltahedral boranes. Since these proper- 
ties are based on neighborhood relationships such as 
the presence or absence of chemical bonds between 
pairs of atoms or the connectivity within the molecu- 
lar structure, such properties may be considered to 
be related to the topology of the molecule. Tensor 
surface harmonic theory [5] has also been used very 
effectively to describe the delocalized chemical 
bonding in deltahedral boranes. 

Introduction 

A classical concept in organic chemistry is the 
aromaticity of two-dimensional planar delocalized 
hydrocarbons exhibiting unusual chemical stability 
of which benzene is the prototype [ 11. More recently 
inorganic chemists have discovered three-dimensional 

An important objective of recent work by one of 
us (R.B.K.) has been a detailed understanding of the 
relation between the qualitative graph-theory derived 
model [4] and quantitative computations on delta- 
hedral boranes. The first effort in this direction [6] 
involved a comparison of the molecular orbital energy 
parameters predicted by the graph-theory derived 
model with those obtained in the original 1962 
LCAO-MO extended Huckel computations of 
Hoffmann and Lipscomb [7] on the highly sym- 
metrical octahedral B6He2- and icosahedral B12H122-. 
Subsequent refinement of the data analysis methods 
[8] has allowed the comparison between topological 
and computational methods to be extended to some 
less symmetrical deltahedral boranes as well as to 
more sophisticated self-consistent-field but still 
semiempirical molecular orbital computations of 
Armstrong et al. [9]. 

A requirement for comparison of topological and 
computational methods for estimating molecular 
orbital energies is the availability of all orbital energy 
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parameters including those of the unfilled antibond- 
ing (virtual) orbitals. Unfortunately, many of the 
important reported computations on deltahedral 
boranes [lo-151 do not provide these antibonding 
orbital energy parameters. Therefore, we extracted 
this information from some recent ab initio SCF MO 
Gaussian 82 computations [16] on the deltahedral 
borane anions B,Hz- (n = 5, 6,7,8,9,10, 12). This 
paper reports a comparison between these computa- 
tions and the predictions of the topological methods 
[4] and introduces a number of refinements in the 
previously reported approach [6,8] for comparison 
of topological and computational methods. These 
refinements facilitate study of the less symmetrical 
deltahedral borane anions. In addition, they provide 
for the first time a means for assessing substituent 
effects by comparing previously reported [9] com- 
putations on the octahedral (n = 6) and icosahedral 
(n = 12) borane anions B,Hn2- with those on their 
perchloro analogues B,Cln2-. 

Topological Methods 

The topology of a chemical bonding network can 
be represented by a graph in which the vertices 
correspond to atoms or orbitals participating in the 
bonding and the edges correspond to bonding rela- 
tionships. Methods discussed elsewhere [4, 17-191 
indicate that each eigenvalue xk of the adjacency 
matrix of such a graph corresponds to a Hiickel 
molecular orbital with energy Ek given by the follow- 
ing equation 

Q +xkP 
Ek= ~ 

1 +x,s (1) 

where a! is the standard coulomb integral, assumed to 
be the same for all atoms, fl is the resonance integral, 
taken to be the same for all bonds, and S is the 
overlap integral between atomic orbitals on neighbor- 
ing atoms. Positive and negative eigenvalues xk from 
eqn. (1) thus correspond to bonding and antibonding 
orbitals, respectively. 

A difficulty in applying eqn. (1) is the need to 
determine three parameters cr, fl and S to relate the 
eigenvalue xk to the corresponding orbital energies 
Ek. Any actual system provides too few relationships 
to determine fully all of these three parameters. 
Therefore, some assumptions concerning the values 
of (Y, /3 and S are necessary for any comparisons to be 
feasible. The approach that is generally taken is to 
assume a zero value for S thereby reducing eqn. (1) 
to the linear equation 

I!& =Cr+X,fl (2) 

The approach used in this paper then determines Q 
from the midpoint of all of the molecular energies 

through taking an appropriate weighted average. For 
reasons dincussed later, this represents an improve- 
ment over the previously used [8] procedure for 
determining cr from the midpoint of selected orbital 
energies. The third parameter /I is determined from 
specific orbital energies. 

The two extreme types of skeletal chemical 
bonding in molecules formed by polyhedral clusters 
of atoms such as polyhedral borane anions or metal 
clusters may be called edge-localized and globally 
delocalized [4,20 ] _ An edge-localized polyhedron 
has two-electron two-center bonds along each edge 
of the polyhedron and is favored when the numbers 
of internal orbitals from the vertex atoms match the 
vertex degrees (the number of edges meeting at a 
vertex is its degree). A globally delocalized poly- 
hedron has a multicenter core bond in the center of 
the polyhedron and is favored when the numbers of 
internal orbitals from the vertex atoms do not match 
the vertex degrees. Fully globally delocalized poly- 
hedra are deltahedra, namely polyhedra in which all 
faces are triangles. The four valence orbitals of vertex 
boron atoms in polyhedral boranes are partitioned 
into one external orbital for bonding to hydrogen 
(e.g. in B,Hn2-) or another external group and three 
internal orbitals for the skeletal bonding. Since 
globally delocalized borane deltahedra are more 
stable than edge-localized borane deltahedra, the 
favored deltahedra in the B,,Hn2- anions are those 
without degree 3 vertices. This accounts for the 
ability to isolate stable B,Hn2- anions for 6 < n < 12 
based on deltahedra with only degree 4 and 5 vertices 
(except for a single degree 6 vertex in BrrH1r2- [21]) 
but the inability to isolate a stable BsH,‘- salt where 
the only possible deltahedral structure, namely the 
trigonal bipyramid, has two degree 3 vertices. 
Although B,Hs 2- has not been pr e p ared, its isoelec- 
tronic, isostructural, but heteroatomic analog, 
C2B3Hs, is known and therefore BSHs2- has been 
included in this paper along with B,H,‘- (n = 6,7,8, 
9, 10, 12) with no indication of any unusual features 
for the anomalous BSHs2-. The relevant deltahedra 
are depicted in Fig. 1 and their topological properties 
are listed in Table 1. 

Let us now consider some important features of 
the chemical bonding topology in the deltahedral 
boranes B,Hn2-. In such systems [4] the three 
internal orbitals on each vertex atom are partitioned 
into two twin internal orbitals (called tangential in 
some treatments [22]) and a unique internal orbital 
(called radial in some treatments [22]). Pairwise 
overlap between the 2n twin internal orbitals is 
responsible for the surface bonding on the delta- 
hedron and leads to the splitting of these 2n orbitals 
into n bonding and n antibonding orbitals. The 
magnitude of this splitting is designated as 20, where 
0, relates to the parameter /I in eqns. (1) and (2). This 
portion of the chemical bonding topology results 



in bonding over the two-dimensional surface of the 
deltahedron, which may be regarded as topologically 
homeomorphic to the sphere [23]. This surface 
bonding can be represented by a disconnected graph 
G, having 2n vertices corresponding to the 2n twin 
internal orbitals and n isolated Kz components; 
a Kz component has only two vertices joined by 
an edge. 

The surface bonding in the deltahedral boranes 
B,H,‘- is supplemented by additional bonding and 
antibonding orbitals formed by global mutual overlap 

triponol 
bipyromid 

octahedron p*ntagonal 
bipyromid 

birdirphsnoid tricoppcd 
trigonol prism 

bicopped squtrre 
ontiprirm 

Icorahedron 

Fig. 1. The seven polyhedral structures for the &so-boranes 
B,Hn2-,n=5,6,7,8,9,10,and12. 
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of the n unique internal orbitals [4]. This portion of 
the chemical bonding topology results in an n-center 
bond directed towards the center of the polyhedron. 
This core bonding can be represented by a graph G, 
in which the vertices correspond to the vertex atoms 
of the deltahedron, or equivalently their unique 
internal orbitals, and the edges represent pairs of 
overlapping unique internal orbitals. The relative 
energies EC of the additional molecular orbitals arising 
from the core bonding are determined from the 
eigenvalues x, of the adjacency matrix A, of graph 
G, using fi or more specifically & as the energy unit 
(eqns. (1) and (2)). The ratio &/& measures the 
magnitude of the core interactions involving the 
unique internal orbitals relative to the surface inter- 
actions involving the twin internal orbitals. 

A critical question is the nature of the core 
bonding graph G, for the deltahedral boranes B,Hn2-. 
The two limiting possibilities for G, are the complete 
graph K, and the deltahedral graph D, and the 
corresponding core bonding topologies can be called 
the complete and deltahedral topologies, respectively. 
In the complete graph K, each vertex has an edge 
going to every other vertex leading to a total of 
n(n - 1)/2 edges [24]. Regardless of the value of n, 
the complete graph K, has only one positive eigen- 
value, namely n - 1, and n - 1 negative eigenvalues, 
namely -1 each. The deltahedral graph D, is identical 
to the l-skeleton [25] of the deltahedron. Thus, two 
vertices of D, are connected by an edge if, and only 
if, the corresponding vertices of the deltahedron are 
connected by an edge. The eigenvalues of the graphs 
D, for the deltahedra of interest are listed in Table 1. 
Note that the graphs D, for the deltahedra of interest 
with seven or more vertices all have at least three 
positive eigenvalues. However, in all cases there is a 
unique positive eigenvalue, which can be called the 

TABLE 1. Topological properties of the deltahedra discussed in this paper 

Deltahedron Symmetry Vertices Number Faces Eigenvalues of the corresponding deltahedral grapha 
point group of edges 

Trigonal bipyramid Dab 5 9 6 (+3.646)/O/-1/-1/-1.646 

Octahedron Oh 6 12 8 (+4)/O/O/O/-2/-2 

Pentagonal bipyramid Dsh 7 15 10 (+4.316)/0.618/+0.618/0/-1.618/-1.618/-2.316 

Bisdisphenoid Dad 8 18 12 (+4.541)/+1.303/+0.618/+0.618/-1.541/-1.618/ 
‘Dad dodecahedron’ -1.618/-2.303 

4,4,4-Tricapped trigonal Dsh 9 21 14 (+4.702)/+1.414/+1.414/+1/-1.702/-21-21 
prism -2.8281-2.828 

4,4-Bicapped square antiprism D4d 10 24 16 (+4.828)/+2/+1.414/+1.414/-0.828/-1.414/ 
-1.414/-21-21-2 

Icosahedron Ih 12 30 20 (+5)/+2.236/+2.236/+2.236/-l/--l/-l/-l/-l/ 
-2.236/-2.2361-2.236 

aThe eigenvalues are listed in descending order with the principal eigenvalue in parentheses. 
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principal eigenvalue, which is much more positive than 
any of the other positive eigenvalues. The principal 
eigenvalue arises from the fully symmetric pathway 
of the symmetry factoring scheme used to determine 
the eigenvalues of the deltahedron, namely the 
pathway using G, components at branches from two- 
fold symmetry operations and G, components at 
branches from three-fold symmetry operations [26]. 
The molecular orbital corresponding to the principal 
eigenvalue of G, may be called the principal core 
orbital. 

The deltahedral boranes of the stoichiometry 
B,Hn2- have 2n + 2 skeletal electrons. The surface 
bonding uses 2n of these skeletal electrons leaving 
only two electrons for the core bonding correspond- 
ing to a single core bonding molecular orbital and a 
single positive eigenvalue for G,. Thus, only if G, is 
taken to be the corresponding complete graph K, will 
the simple model given above for globally delocalized 
deltahedra give the correct number of skeletal elec- 
trons in all cases, namely, 2n + 2 skeletal electrons 
for 6 <n < 12. Such a model with complete core 
bonding topology is the basis for the graph-theory 
derived model for the chemical bonding topology 
of deltahedral boranes and metal clusters discussed in 
previous papers [4, 19,27,28]. However, deltahedral 
core bonding topology can also account for the 
observed 2n t 2 skeletal electrons in the B,Hn2- 
deltahedral boranes if there is a mechanism for raising 
the energies of all of the core molecular orbitals other 
than the principal core orbital to antibonding energy 
levels. The original graph-theoretical analysis [6] of 
the 3N Hoffmann-Lipscomb LCAO-MO extended 
Htickel computations [7] on icosahedral B12H,22P 
showed that four core orbitals would be bonding 
orbitals except for core-surface orbital mixing which 
raises the energies of three of these four core orbitals 
to antibonding levels leaving only the principal core 
orbital as a bonding core orbital. The new SCF MO 
computations on B,Hn2- presented in this paper are 
also consistent with deltahedral rather than complete 
core bonding topology for all values of n between 6 
and 12 with core-surface mixing raising the energies 

of all core orbitals except the principal core orbital to 
antibonding levels. 

The distinction between complete and deltahedral 
core bonding topology is most clearly explained for 
octahedral B6He2-. Among the 15 pairs of six vertices 
in an octahedron (D6 graph) 12 pairs correspond to 
octahedral edges (cis interactions) and the remaining 
three pairs consist of antipodal vertices related by the 
inversion center and not connected by an edge (mans 
interactions). However, all of the 15 pairs of six 
vertices in a complete K6 graph correspond to edges 
of equal weight. In an octahedral array of six points 
a parameter t can be defined as the ratio of the rrans 
interactions to the cis interactions. This parameter f 
is 0 for pure octahedral (D6) topology and 1 for pure 
complete (K6) topology. Values oft between 0 and 1 
can be used to measure gradations of topologies 
between D6 and K6 corresponding to the weighting 
of edges representing tram interactions relative to 
those representing cis interactions in the underlying 
graph. Most significantly, the value of t for a given 
computation on B6H6 *- can be estimated from the 
energy parameters for the A,, and Es core molecular 
orbitals [6,8]. The core bonding topology corre- 
sponding to a given computation on B6Hs2-- can thus 
be determined. 

In order to determine possibilities for core-surface 
orbital mixing as well as core-external and surface- 
external orbital mixing, the representations of the 
relevant sets of orbitals are required. These are 
listed in Table 2 for the deltahedra of interest. The 
representation I0 appears in triplicate for the core, 
external bonding, and external antibonding orbitals 
and the representation I‘, appears once for the 
surface orbitals. Thus, the only pure orbitals are the 
n surface orbitals which have irreducible representa- 
tions not found in the IO set; these are starred in 
Table 2. The purity of these surface orbitals is shown 
most clearly in our computations on B,Hr12- deriva- 
tives by the complete absence of any hydrogen 1s 
components in these orbitals. The principal core 
orbitals, although not pure, are of such low energies 
that they do not mix significantly with higher energy 

TABLE 2. Orbital representations for the deltahedra discussed in this paper 

Deltahedron 

Trigonal bipyramid 
Octahedron 
Pentagonal bipyramid 
Bisdisphenoid (‘& dodecahedron’) 
4,4,4-Tricapped trigonal prism 
4,4-Bicapped square antiprism 
Icosahedron 

aThe pure surface orbitals are starred. 

r0 (core and external orbitals) rn (surface orbitals)a 

2A,’ + E’ + Az” A?’ + 2E’ + A2” + 2E” 
Atg+Tti+Eg Tti + TZg* + TZu* + Tlg* 
2A1’+ El’+ Ei + Az” A2’* + 2E,’ + E2’ + A2” + 2E,“* t E2”* 
2A, + 2B2 + 2E 2A1 + 2Az* + 2B1* •t 2B2 + 4E 
2Ai t 2E’ t A; t E” AI’ t 2A2’* t 3E’ + Al”* + 2A2” + 3E” 
2A, t 2B2 f E, + E2 + E3 Al + A2* + BI* +B2t3E1+2E2+3E3 
Ag+Tk+TzU+Hp Th t H, + Gu* + G,* + H,* + Tu* 
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bonding, all of the molecular orbital energy param- 
eters are. required including those for the unfilled 
antibonding (virtual) orbitals thereby precluding such 
an analysis for many of the published computations 
[lo-151. Having such information, the first step is 
to calculate (IL, the energy ‘zero point’ in eqns. (1) 
and (2). In the original Hoffmann-Lipscomb com- 
putations [7] a! could be taken to be zero so that its 
determination was no problem. In the previous paper 
[8] the value of (11 for the computations of Armstrong 
et al. [9] was determined from the average of the 
energy parameters of the pure surface orbitals. This 
procedure has the following two disadvantages. 

(a) Only the energy parameters of the pure surface 
orbitals can be included in the averages since the 
energy parameters of the other surface orbitals are 
distorted by substantial core-surface and external- 
surface mixing. This introduces the possibility of 
sampling error. 

(b) The energy parameters of both bonding and 
antibonding surface orbitals are required for the 
determination of a. However, for BroH,e2- the pure 
surface orbitals are all antibonding making it impos- 
sible to determine (II by this method. 

For these reasons the value of Q corresponding to 
a given set of molecular orbital energy parameters 
was determined by taking the mean of the energy 
parameters for all .5n molecular orbitals of the 
B H 2- derivative realizing that the degenerate 
orbi;als of E, T, G, and H representations correspond 
to sets of 2, 3, 4, and 5 orbitals, respectively, having 
identical energy parameters. Hence, the parameter OL 
becomes 

orbitals belonging to the same totally symmetric 
Alp-type irreducible representations. Thus, for a given 
computation on a B,Hn2- anion the energy param- 
eters of the pure surface orbitals and the principal 
core orbitals are the best numbers to use to calculate 
parameters of interest such as (Y, /3,, and &. 

These ideas concerning the skeletal bonding in 
deltahedral borane anions can be related to tensor 
surface harmonic theory as developed by Stone [5] 
and elaborated by Johnston and Mingos [29]. The 
orbitals of the F,, representation such as the n core 
orbitals correspond to the (scalar) sphercial har- 
monics which for deltahedra with n vertices corre- 
spond successively to the single S”, the three P”, the 
five D”, the seven FU orbitals, etc., of increasing 
energy and nodality. The orbitals of the F, represen- 
tation such as the surface orbitals correspond to the 
vector spherical harmonics which for deltahedra with 
n vertices correspond successively to three P”, five 
Dr’, seven F” bonding/antibonding orbital pairs, etc., 
of increasing energy and nodality. This relates to the 
following aspects of the graph theory derived model 
for the skeletal bonding in deltahedral boranes. 

(1) The principal core orbital corresponds to the 
S,O orbital in tensor surface harmonic theory. Since 
there are no S,” or $,” surface orbitals, the principal 
(S,o) core orbital cannot mix with any surface 
orbitals in accord with ideas discussed above. 

(2) The three core orbitals of lowest energy other 
than the principal (S,o) core orbital correspond to 
P,” orbitals in tensor surface harmonic theory. These 
orbitals correspond to the three most positive eigen- 
values other than the principal eigenvalue of the 
corresponding deltahedra (Table 1). The P,O core 
orbitals mix with the Pn” surface orbitals so that the 
P,” core orbitals become antibonding with concurrent 
lowering of the energies of the Ppn surface orbitals 
below the energies of the other surface bonding 
orbitals. Thus, in computations of orbital energies of 
deltahedral borane anions, the lowest lying molecular 
orbital is the principal (S,“) core orbital and the next 
lowest lying orbitals are three P” surface orbitals 
which will be degenerate in the case of octahedral 
B6Hb2- and icosahedral B12Hlz2~ but not in the cases 
of the less symmetrical deltahedra. This ordering of 
the lowest lying molecular orbitals is particularly 
apparent in the MNDO computations presented by 
Brint et al. [13]. However, their label of P’ rather 
than P* for the three orbitals immediately above the 
principal core orbital S” obscures the relationship of 
their computed molecular orbitals to those predicted 
by the graph-theory derived method. 

Comparison of Topological and Computational 
Approaches 

In order to relate a given computation on a delta- 
hedral borane to topological models for its chemical 

k f k 

where gk is the degeneracy of energy level Ek and the 
summation is over all orbitals k. The orbital energies 
listed in the tables are then Ek’ = Ek - (Y, such that 

~g,ifk’ = 0. 
k 

The surface energy unit, &, can also be estimated at 
this stage as the degeneracy-weighted average distance 
of the pure surface orbitals from the energy zero 
point (Y. The sign of 0, is the same as the sign of the 
bonding pure surface orbitals, namely positive for the 
Hoffman-Lipscomb energy parameters [7] and 
negative for the Armstrong-Perkins-Stewart energy 
parameters [9] as well as the new computations 
introduced in this paper. This method of determining 
/3, from the pure surface orbitals is subject to 
sampling errors as noted above. In the previous 
paper [8] degeneracy weighting for determining 0, 
(as well as o) from the pure surface orbitals was not 
used. However, this only makes a difference for 
icosahedral Br2H122-, and even in this case the 
difference was found to be minor. 
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TABLE 3. Analysis of the nb inifio SCF MO Gaussian 82 computations on the deltahedral borane anions 

Parameter ‘MS 
2- 

B6H6 
2- 

WY 
2- 

Ws 
2- 

bb 
2- 

B ,oH 10 
2-- 

B 12H 12 
2- 

Principal core orbitala -1.063(Ar’) -l.l26(A,,) -l.l37(Ar’) -l.l42(Ar) -1.157(Ar’) -l.l73(Ar) - l.l84(A,) 
Pure surface orbitalsa -0.453(E”) -0.486(Ta,) -0.506(Er”) -0520(Br) -0.444(Aa’) +0.309(Br) -0.526(G,) 

+0.32l(Aa’) +0.198(T& +0.223(E2”) +0.087(A2) +0.251(Ar”) +0.563(A2) +0.156(Gg) 
+0.527(E”) +0.548(Tra) +0.472(Er”) +0.396(BI) +0.655(A2’) +0.445(H,) 

+0.74O(Aa’) +0.444(A2) +0.682(TIa) 
Lowest lying P, surface 
Orbitals (see text)aq b 

-0.828(Aa”) -0.848(Tr,) -0.887(Er’) -0.928(B2) -0.949(E’) -0.995(Ba) -0.998(TI,) 
-0.813(E) -0.850(A2”) -0.883(E) -0.885(A2”) -0.934(Er) 

Ly +0.707 +0.675 +0.643 +0.616 +0.597 +0.579 +0.547 

& -0.456 -0.429 -0.466 -0.415 -0.448 -0.436 -0.467 
&(deltahedral) -0.291 -0.282 -0.263 -0.251 -0.246 -0.243 -0.237 

&I& 0.638 0.657 0.564 0.604 0.549 0.557 0.507 
AE 0.597 0.684 0.730 0.539 0.480 0.581 0.652 

‘The orbital energy parameters are given to 01 with negative parameters corresponding to bonding orbitals and positive parameters 
corresponding to antibonding orbitals. The energy unit is the hartree. The representations of the orbitals are given in paren- 
theses. bThese are the three surface orbitals whose energies are lowered significantly by core-surface mixing with the three Pa’ 
core orbitals. 

Further analysis of the computed energy param- 
eters either requires some special symmetry such as 
that found in octahedral B6H62- or icosahedral 
Br2Hr22- or some further assumptions concerning 
the chemical bonding topology for the less sym- 
metrical systems. In the cases of B6H6’- and 
Br2HIz2- the core energy units &, and the non- 
adjacent atom unique internal orbital interactions 
(e.g. t in B6He2- and m in Br2Hr2-) can be estimated 
from the energy parameters of the principal core 
orbital and the other core orbital not mixing with 
surface orbitals. This method is subject to errors 
arising from core-external interactions. However, a 
comparison of the Hoffmann-Lipscomb ‘3n’, ‘4n’ and 
‘5~’ computations [7] suggests that these core- 
external interactions are not large. 

The analysis of the molecular orbital parameters 
from our ab initio SCF MO Gaussian 82 computa- 
tions on octahedral B6H:- and icosahedral B12Hr22- 
suggest deltahedral rather than complete core 
bonding topologies. Thus, for octahedral B6H6’- the 
parameter t was found to be only 0.233, i.e. much 
closer to 0 than 1 indicating deltahedral (D6) rather 
than complete (K6) core bonding topology. If the 
core bonding topologies of the other less symmetric 
deltahedra are also assumed to be deltahedral rather 
than complete, then the core energy unit, &, can be 
found from the equation 

P, = ~(Ar”)/x(Aro) (4) 

where E(A,‘) is the energy parameter for the 
principal core orbital and x(Ar”) is the principal 
eigenvalue of the corresponding deltahedral graph 
D, (Table 1). 

Table 3 summarizes the analysis of our computa- 
tions on the B,,H:- anions (n = 5, 6,7,8,9,10, 12) 
including the parameter energies for the principal 

TABLE 4. Analysis of computations on octahedral BeHe2- 
(X = H, Cl) anion? 

B6H6 
2- 

B6C16 
2- 

GD HL5N APS APS 

Core orbitals 
Arg (principal) -1.126 +3.210 -50.3 -52.3 

% +0.470 -0.888 +13.6 +17.7 

Pure surface orbitals 

T% -0.486 +0.493 -5.5 -11.1 

T2u +0.198 -0.416 +9.8 +14.8 

Tta +0.548 -0.671 +11.7 +16.0 

Derived parameters 

;a 

+0.675 0 +7.2 -1.3 
-0.429 0.527 -8.1 -13.2 

PC -0.266 0.683 -10.7 -11.7 

UPa 0.620 1.296 1.320 0.886 
t 0.233 0.700 0.700 0.470 

aGD = our (Gimarc-Dai) ab initio SCF MO Gaussian 82 com- 
putations; HL5N = Hoffmann-Lipscomb 5N computations 
[7]; APS = Armstrong-Perkins-Stewart computations [9]. 
Energy units: GD, hartrees; APS, electron volts; HLSN, 
dimensionless quantities given by ((Y - Ek)/(K - Ek) where 
K is the proportionality constant between resonance integral 
p and overlap S:p,, = KS,,. 

core and pure surface orbitals and the values for cr, 
PC, and 0,. Tables 4 and 5 summarize more detailed 
analyses of the octahedral and icosahedral systems, 
respectively, including comparisons of the results 
from the new computations with those from the 
earlier Hoffmann-Lipscomb [7] and Armstrong- 
Perkins-Stewart [9] computations. The refinements 
noted above in the procedure for determining cr for 
the Armstrong-Perkins-Stewart [9] computations 
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TABLE 5. Analysis of computations on icosahedral B tzXta*- 
(X = H, Cl) anion? 

2- 
B 12H 12 

2- 
B 12Cl12 

CD HLSN APS APS 

Core orbitals 
A, (principal) -1.184 +4.469 -70.6 -66.6 

T2u +0.459 -0.887 +13.1 +16.2 

Pure surface orbitals 
Cu -0.526 +0.518 -4.7 -3.4 

C, +0.156 -0.471 t9.6 +13.9 

Hu to.445 -0.678 +11.3 t15.4 

Tra +0.682 -0.782 t11.8 +15.8 

Derived parameters 

is -0.467 to.547 0 0.580 -7.8 +5.1 -3.8 -9.2 
PC -0.218 0.602 -9.3 -9.6 
&I& 0.466 1.039 1.192 1.043 
m = 2p 0.078 0.441 0.471 0.352 

%D = our (Gimarc-Dai) ab initio SCF MO Gaussian 82 com- 
putations; HLSN Hoffmann-Lipscomb 5N computations 
[7] ; APS = Armstrong-Perkins-Stewart computations [9]. 
Energy units: GD, hartrees; APS, electron volts; HLSN, 
dimensionless quantities given by ((Y - Ek)/(K - Ek) where 
K is the proportionality constant: Prs = KS,,. 

make some of the numbers in Tables 4 and 5 slightly 
different from those reported previously [8]. 

Octahedral and Icosahedral Borane Anions 

Symmetry factoring methods [26] described in 
greater detail in an earlier paper [6] indicate that in 
the absence of core-surface orbital mixing and core- 
external orbital mixing the energy parameters of the 
octahedral core orbitals in B6He2- relative to (II are 
determined by the equations 

(5a) 

(5b) 

W&c = C-2 + OPc (5c) 

where & is the core energy unit and t is the ratio of 
trans to cis interactions. A comparison of the molecu- 
lar orbital energy parameters from the 3n, 4n, and 5n 
computations on BeHe*- by Hoffmann and Lipscomb 
[7] suggests that core-external orbital mixing, unlike 
core-surface orbital mixing, is relatively minor. The 
energies of the Al, core orbital, readily recognized as 
by far the most strongly bonding core orbital, and of 
an antibonding E, orbital can therefore be used to 
calculate the parameters 0, and r given in Table 4. In 
cases where the two antibonding E, orbitals differ 
significantly in energy as in our computations (GD in 

Table 1) only one of the two possible choices, namely 
the less antibonding E, orbital, was found to give a 
physically reasonable positive value of t between 0 
and 1. The E, orbital giving such a positive value of r 
was therefore chosen to be the core orbital leaving 
the more strongly antibonding E, orbital to be an 
antibonding external orbital. 

A similar method can be used to analyze the 
molecular orbital energy parameters of icosahedral 
Bi2Hi2*- but there are added difficulties because the 
usable system of equations is underdetermined. The 
energy parameters of the four core bonding orbitals 
of icosahedral Bi2Hi2*- relative to a are thus deter- 
mined by the equations 

E(A& = (5 + 5m + PM, (6a) 

EP1,), = [d/5(1 - m) - ~10, (6b) 

WI&, = C-1 - m + PM, (6~) 

E(T2,), = [-d/5(1 - m) - P)I& (64 

where 0, is the core energy unit, m is the ratio of the 
meta (nonadjacent nonantipodal) to orrho (adjacent) 
interactions and p is the ratio of the para (antipodal) 
to ortho interactions. However, only eqns. (6a) and 
(6d) can be used to calculate &, m and p since only 
the Ar, and T,, core orbitals are free from core- 
surface mixing. The arbitrary auxiliary assumption 
PI 

m = 2p (7) 

is therefore introduced allowing the following equa- 
tions for 0, and m to be derived from eqns. (6a) and 

(6d). 

13, = 
E(A is& - (3.168)E(T2& 

12.083 

m=2p= f-(EF -5) 

(84 

W) 

Using these equations gives the values for 0, and m 
listed in Table 5 for various computations on icosa- 
hedral Bi2Hr2*-. 

The values for p,, /I,/& and t in Table 4 and PC, 
/3,/p, and m in Table 5 indicate the following features 
of the various computations on octahedral BeHb*- 
and icosahedral Br2Hi2*-. 

(1) The 5n Hoffmann-Lipscomb LCAO-MO ex- 
tended Hiickel computations (HLSN) [7], and the 
Armstrong et al. self-consistent molecular orbital 
computations (AI’S) [9], both of which use Slater 
orbitals, give very similar values of &//I, and 1, 
particularly in the case of octahedral BeHe*-. 

(2) Our SCF MO Gaussian 82 computations (CD) 
give much lower values of both /I,/& and the non- 
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adjacent core orbital interaction parameters (t for 
B6H6 ‘- and m for B12H1$-) than the HLSN and 
APS computations using Slater orbitals. These obser- 
vations suggest the following: 

(a) The core bonding appears significantly weaker 
when Gaussian orbitals rather than Slater orbitals are 
used with /3,//3, for calculations using Gaussian 
orbitals being about half that of calculations using 
Slater orbitals. 

(b) The non-adjacent core orbital interactions for 
the Gaussian calculations are so small (e.g. t = 0.233 
for B6Hh2- and m = 0.078 for BIZHIZZ-) that the 
core bonding can be approximated by deltahedral 
rather than complete topology. This justifies the 
assumption of deltahedral topology for the other 
deltahedral borane anions B,H:- (n = 5, 7,8,9, 10) 
where the lower symmetry prevents an analysis of a 
type analogous to that in Table 4 for octahedral 
BciH6 *- or in Table 5 for icosahedral B12H12’-. 

(c) The TI,, orbitals, which, if pure, would be non- 
bonding in octahedral core topology for B6H,‘- 
and bonding in icosahedral core topology for 
BIzHIZ’-, become antibonding through strong core- 
surface mixing as discussed in the previous papers 
[6,8]. Because of this the simpler model using com- 
plete core bonding topology where G, = K, gives the 
correct numbers of bonding and antibonding orbitals 
even though K, is a poor approximation of the actual 
G, derived from the computations using Gaussian 
orbitals. 

(d) The apparent core bonding topology appears 
to be very sensitive to the computational approach 
used. Thus, for octahedral B6H6*- t = 0.700 for the 
computations using Slater orbitals (HLSG and APS) 
whereas t = 0.233 for OUT computations using 
Gaussian orbitals (GD). This may relate to the sen- 
sitivity of the non-adjacent core orbital interactions 
to the behavior of the relevant atomic orbitals at 
longer distances. Thus, elementary geometry indicates 
that in octahedral B6H2- the distance between a pair 
of tram (antipodal) boron atoms is d2 = 1.414 times 
the distance between a pair of cis (adjacent) boron 
atoms. Gaussian functions of the type exp(-&) fall 
off more rapidly at longer distances than Slater 
functions of the type exp(-{r). 

Less Symmetrical Deltahedral Borane Anions 

Table 3 summarizes the energy parameters for the 
important molecular orbitals (principal core orbital 
and pure surface orbitals) from our ab initio SCF MO 
Gaussian 82 computations on the borane anions 
B,H,* - including the less symmetrical BsHs*-, 
B7H7 *--, BsHs’--, BgH9*- and BloHlo2- as well as 
octahedral B6Hs 2p and icosahedral B12H,;-. The 
values for 01 were determined from a mean of all of 
the orbital energy parameters, and decrease monoton- 

ically with increasing n. The deltahedral core 
topology suggested by the more detailed analysis of 
the octahedral and icosahedral systems discussed 
above was used through eqn. (4) to determine PC, 
which also decreases monotonically with increasing 
n. Table 3 presents (3, for pure deltahedral core 
topologies for B6H6’- (i.e. t taken to be zero) and 
BlzHlzZ~ (i.e. m and p taken to be zero) for ease of 
comparison with the pure deltahedral 0, for the other 
deltahedral boranes in contrast to the values of 0, in 
Tables 4 and 5 which were obtained from the energy 
parameters of the two core orbitals not mixing with 
the surface orbitals using eqns. (5a) and (5~) for 
B6H6*-- and eqns. (6a) and (6d) for B12H12*- as 
discussed in the previous section. The pure surface 
orbitals were used to determine 0, through a weighted 
average of their energy parameters; 0, does not 
increase monotonically with increasing IZ possibly 
owing to the sampling error discussed above. The 
parameter AE in Table 3 is the separation between 
the highest occupied and lowest unoccupied molecu- 
lar orbitals. The fact that AE is lowest for BgH9’- 
may relate to the observation of a 226 nm ultraviolet 
maximum for this borane anion [21] in contrast to 
the observation of no ultraviolet maxima above 200 
nm for the other borane anions B,H,‘-. The presence 
of the two degree 3 vertices in the trigonal bipyramid 
of BsHs*- would seem to preclude globally de- 
localized skeletal bonding as discussed above. How- 
ever, there appears to be nothing exceptional in the 
values of a, &, /3,/b, and AE for B,Hs*- or the 
distribution of molecular orbital energy parameters 
compared with the other deltahedral borane anions 
B,H,*-. 

Octahedral and Icosahedral Perchloroborane Anions 

The experience gained by OUT extensive analysis 
of the computed orbital energy parameters has been 
applied to the analysis of computations on octa- 
hedral B6C16 *- and icosahedral BlzCl12*- by 
Armstrong et al. [9] in order to assess the effect on 
the skeletal bonding when hydrogen atoms are 
substituted completely with chlorine atoms. The 
B,Cl,*~ anions are 8n valence orbital systems because 
of the three p valence orbitals containing lone pairs 
in addition to the s valence orbital on each chlorine 
atom. In the B,Cl,*- anions the representation r. 
(Table 2) appears in quadruplicate for the core, 
external bonding, external antibonding, and p0 
chlorine lone pair orbitals and the representation r, 
(Table 2) appears in duplicate for the pure surface 
orbitals and the pn chlorine lone pair orbitals. The 
chlorine lone pair orbitals lead to 3n slightly bonding 
orbitals which separate the core, surface, and external 
bonding orbitals from the core, surface, and external 
antibonding orbitals [9]. Comparison of the 



221 

molecular orbital energy parameters relative to (Y for 
corresponding B,Hn2- and B,C!ln2- derivatives suggest 
that the chlorine lone pair orbitals do not mix much 
with the important core and surface orbitals so that 
the methods used above to analyze the computations 
on B6Hb2- and Br2Hr2’- can be applied meaningfully 
to estimate values for (IL, OS, &//.I, and t or m listed in 
Table 4 for B6Clh2- and Table 5 for B12Clr2 2- . 

Comparison of the values for these parameters for 
B,Cl,2- with those for the corresponding B,Hn2- 
computations (n = 6 and 12) reveals the following. 

(1) &//I, is much less for B,Cln2- than for B,Hn2- 
particularly when n = 6. 

(2) The core interactions involving orbitals on 
non-adjacent atoms (t in the octahedra and m in the 
icosahedra) in B,C1,2- are about 213 those in the 
corresponding B,Hn2-. 
These observations suggest that the core bonding is 
weaker in B,Cl,,- relative to the corresponding 
B H 2-. This is in accord with the higher electro- 
nlgayivity of chlorine relative to hydrogen. Substitu- 
tion of chlorine for hydrogen is thus likely to lead to 
withdrawal of electron density from the boron 
unique internal orbitals participating in the core 
bonding thereby weakening the core bonding. 

Conclusions 

This paper presents ab initio SCF MO Gaussian 82 
computations on the complete series of deltahedral 
borane anions B,H:- (n = 5, 6, 7,8,9, 10, 12) lead- 
ing to molecular orbital energy parameters corre- 
sponding more closely to D, deltahedral core bonding 
topology than to K, complete core bonding 
topology. However, core-surface mixing, as noted 
previously [6,8] for icosahedral B,2H,22-, raises the 
energies of all of the core molecular orbitals, except 
the lowest energy principal core orbital of A, sym- 
metry, to antibonding levels. For this reason the 
graph-theory derived model [4] using K, complete 
core bonding topology gives the correct numbers of 
bonding and antibonding orbitals for the deltahedral 
boranes and hence the correct number of skeletal 
electrons. 

This paper also presents the first study of the 
effect of chlorine substitution on the skeletal bonding 
in deltahedral boranes. Thus substitution of chlorine 
for hydrogen in B,H,,2- to give B,C1,2- makes the 
core bonding topology more nearly deltahedral 
rather than complete and weaker relative to the 
surface bonding in accord with the expected electron- 
withdrawing tendencies of chlorine relative to 
hydrogen. 

The ab initio SCF MO calculations on which this 
paper is based differ in two significant respects from 
the semiempirical methods which produced energy 
levels used in earlier papers of this series. First, the 

ab initio calculations handle interelectronic repulsions 
in a theoretically consistent way while semiempirical 
SCF procedures include them in an ad hoc way and 
the extended Hiickel method neglects them entirely. 
None of the MO models treats electron repulsions in 
a completely proper manner. To do so would require 
extensions to configuration interaction or perturba- 
tion calculations to include effects of detailed 
electron correlation with a concomitant loss of the 
easy interpretability of individual orbital energies. 
Second, the ab initio SCF calculations use Gaussian 
orbitals based on functions of the form exp(-m2) 
which in linear combination attempt to approximate 
the functional behavior of Slater-type functions based 
on the exponentials exp(+) which can be used 
directly in the semiempirical calculations. The 
Gaussian functions differ significantly from the Slater 
functions both at the nuclei and at long distances 
from the nuclei. Gaussian AOs are calibrated for 
atoms and the corresponding MOs are optimized for 
bonding in molecules. Electron densities at longer 
distances, such as non-bonding or trans-polyhedral 
distances, might not be so well represented by 
Gaussian orbitals compared to the Slater orbitals. In 
this connection deltahedral borane anion computa- 
tions using Gaussian orbitals lead to core bonding 
topology, more nearly deltahedral rather than com- 
plete, and weaker core bonding relative to surface 
bonding in accord with the more rapid decrease of 
Gaussian orbitals at increasing distances. Further- 
more, dianions are not well represented by minimal 
basis sets. Our results show positive energies for the 
HOMOs of all the close-carboranes considered here. 
Indeed, this has been pointed out by Fowler who has 
demonstrated that the HOMO for B6H,‘- is positive 
even at the 6-3 lG* level, indicating that B6Hh2- must 
be unstable as a free dianion but stable in a crystal 
field [ 151. Increased basis sets can lower the energies 
of the occupied MOs only slightly while the numbers 
of vacant MOs of positive energies are greatly in- 
creased. Since the topological model requires energies 
of all MOs, vacant and occupied, increasing the size 
of the basis set will raise the center of gravity or (Y of 
the MO system. 

Computational Details 

The ab initio SCF MO calculations were done with 
the Gaussian 82 program [30] on the IBM 3081 com- 
puter of the University of South Carolina Computer 
Center. The STO-3G basis set was employed through- 
out. Molecular geometries were optimized under 
point group symmetry constraints appropriate for 
each borane. These restrictions are appropriate 
because (1) to within experimental error those are 
the observed structures of the close-boranes and (2) 
we wanted to use the appropriate symmetry point 
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groups as the basis for relating calculated orbital 
energies within the topological model. The structures 
actually produced for the close-borane anions by the 
symmetry restricted optimizations are remarkably 
close to those obtained from experiment as discussed 
elsewhere [16]. CPU times for optimizations for 
individual boranes ranged from 9 min for BsHs’- to 
5 min for B6H6 2- to 145 min for B,2H122-. The time 
for the larger B6He2- was shorter than that for the 
smaller BsHs’- because the regular octahedron has 
only two independent variation parameters, the B-B 
and B-H distances, while the trigonal bipyramid has 
four independent distances. Obviously, CPU times 
depend to some extent on the quality of the guess of 
the starting structure. Total CPU time for the seven 
structures was 435 min. 

Several sets of numbers specify the results of 
optimized ab initio SCF MO calculations. The orbital 
energies for each borane anion B,Hn2- (n = 5,6,7,8, 
9, 10, 12) will be made available in another format. 
Total energies, optimized B-B and B-H bond dis- 
tances and Mulliken net atom populations have been 
published elsewhere [ 161. 
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