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Abstract 

The electronic structure of the isoelectronic com- 
plexes [Os(NX)C1J2- (X = S or 0) and [Os(NS)- 
Cl,(H,O)]‘- has been investigated within a CNDO/2 
formalism in order to investigate the nature and 
energetics of the interaction between osmium and 
isoelectronic NS and NO ligands. The computed 
trends for OS-N, NS and NO bond strengths in 
the complexes, as measured by Wiberg indices, charge 
distribution and orbital population suggest that 
the strength of the OS-NS bond is greater than 
that of the OS-NO bond and the NS ligand is a better 
electron remover from the central metal atom than 
the NO ligand. The strength of the OS-Cl bond 
trans to the NS ligand is weaker than the OS-Cl 
bond truns to the NO ligand. The calculations con- 
firm the experimental observations that the chlorine 
atom positioned truns to a NS ligand is more labile 
and, hence, more susceptible to replacement. 

Introduction 

Considerable progress has been made recently 
in the synthesis and structural determination of 
transition metal thionitrosyl complexes [l-9]. 
A number of complexes has been structurally charac- 
terized [lo-201, but little is known about their 
electronic structures [21,22]. Owing to the iso- 
electronic nature of NS and NO, the comparative 
bonding properties of thionitrosyl and nitrosyl 
ligands is of special interest. The 7a-donor orbital 
of NS is at higher energy than the 5o-donor orbital 
of NO, while the 3rr(n*)-acceptor orbital of NS is 
at lower energy than the 2n(rr*)-acceptor orbital 
of oxygen [23]. There is a weaker P,-P, bonding 
for sulfur compared to oxygen. The above results 
lead one to expect that M-NS bonds should be 
stronger than M-NO bonds. In this paper we report 
the comparison of the electronic structures of 
[OS(NX)C~,]~- (X = S or 0) and [Os(NS)C14- 

(H,O)l’ - complexes using CNDO/2 molecular 
orbital calculations. In this investigation, particular 
attention was focused on the nature of the tram 
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effect and, hence, on the electronic composition 
of the molecules. This is obtained from the cal- 
culated electron densities and Wiberg bond indices. 

Computational Details 

Molecular orbital calculations were done using 
a CNDO/2-U method [24]. The orbitals 6s, 6p 
and 5d of osmium were included in the calculation. 
Wave functions for these orbitals were those given 
by Burns [25]. The wave functions used for S(3s 
and 3p), Cl(3s and 3p) and N(2s and 2p) were slater 
type orbitals. Atomic charges and overlap popula- 
tions were obtained by Mulliken population anal- 
ysis [26]. The coordinate system adopted for 
[Os(NS)CL,L]“- (L= H20, n = 1; L= Cl, n = 2) 
is given in Fig. 1. 
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Fig. 1. Coordinate system for [Os(NX)Cl~L]“-; z axis is 
out of plane. 

Interatomic distances were estimated on the 
basis of the X-ray structures of octahedral osmium 
thionitrosyl complexes [Os(NS)C1s(PPh,)2] [ 121 
and [Os(NS)Cl,(H,O)]- [13] and osmium nitrosyl 
complexes [Os(NO)C12(HgC1)(PPh,)2] [27] and 
[Os(NO)Cls(SnC1s)2] [28]. In spite of the deviation 
from 180” reported for the OS-N-X angle, this 
was disregarded in the present calculations and 
C,, symmetry maintained. The estimated distances 
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in [OS(NO)C~,]~- are: OS-N = 1.734, N-O = 1.166, 
trans-OS-Cl = 2.364, cis-OS-Q = 2.380 A and in 
[Os(NS)Cls] ‘- are: OS-N = 1.779, N-S = 1.503, 
trarzs-OS-Cl = 2.399, cis-OS-Cl = 2.387 A. Distances 
reported for [Os(NS)CI,(H,O)]- [13] are used: 
OS-N = 1.731, N-S = 1.5 14, OS-Cl = 2.356, OS-O = 
2.165, O-H = 0.95 a. All computations were per- 
formed using the QCPE474 program [29], imple- 
mented on an ICIM-6000 computer. 

Results and Discussion 

Wiberg Indices 
Bond strength results (as measured by Wiberg 

indices [30]) are summarized in Table 1. The values 
of the N-X Wiberg indices show the trend [Os(NS)- 
Cls] 2 - < [os(Ns)cl,(H,o)] l- < [Os(NO)Cl,] 2 - 
which suggests that the OS-N 7r-backbonding is 
less for the osmium nitrosyl complex (the value of 
OS-N n-backbonding in [OS(NS)CI,]~- is 2.2755 
as compared to 2.2416 in [OS(NO)CI,]~-). The 

values of the OS-N Wiberg indices, which show the 
trend [Os(NS)Cl,(H,O)] 1 - > [Os(NS)CI,] 2 - > 
[Os(NO)Cl,] 2--, confirm the above statement. Elec- 
tron impact measurements at 70 eV for [CpCr- 
(CO),NX] (Cp = $-CsHs; X= 0, S) also suggest 
that the thionitrosyl ligand is more tightly bound 
in [CpCr(CO),(NS)J than is the nitrosyl ligand in 
[CpCr(CO)2(NO)] [3 11. For [Os(NX)Cl,] 2 - (X = 
S or 0), the strength of the trans-OS-Cl bond is 
larger for the nitrosyl complex (Wtrans-OS-Cl= 
0.9541) than the bond rruns to the thionitrosyl 
complex (Wtruns-OS-Cl = 0.9 186) and the cis- 
OS-Cl bond is stronger than the trans-OS-Cl bond 
in both the complexes. The calculations confirm 
the experimental observations that the chlorine 
atom positioned tram to a NS ligand is more labile 
and, hence, more susceptible to replacement than 
the chlorine atom positioned frans to a NO ligand. 

Charge Distribution 
Orbital charges and gross atomic charges are 

presented in Table 2. A comparison of charges on 

TABLE 1. Bond strengths (Wiberg Indices) for [OS(NX)CI~]~- (X = S or 0) and [Os(NS)C14(H20)j I- 

Bond [ Os(NS)Cls] 2- [Os(NO)Cls] 2- [ 0s(NS)C14(H20)] ’ - 

OS-N 2.2155 2.2416 2.3057 

0 0.7039 0.7193 0.7568 

b-X 1.0412 1.5716 1.5222 1.2618 1.0841 1.5489 

trans-Os-L 0.9186 0.9541 0.3098 

cis-Os-Cl 0.9427 0.9607 0.9660 

TABLE 2. Orbital charges and gross atomic charges for [OS(NX)CI~]~- (X = S or 0) and [Os(NS)C14(H20)] I- 

Complex 

[Os(NS)Cl,]‘- 

Orbital populations 

OS 

6s 0.8704 

6p, 0.8687 

6PY 0.8687 

6pz 0.8572 

5d,z 0.627 1 
5d,z 0.997 1 

5d,z 0.997 1 

5d,z_,,z 0.6170 

5d,y 2.0000 

cis-Cl 

3s 1.5167 
3Px 1.7908 

3PY 1.9565 

3Pz 1.9420 

Atomic charges 

N 

2s 1.1908 OS = -0.7033 

2p, 1.2193 N = +0.0365 

1.2193 S = -0.2923 
2PY 
2Pz 1.3341 cis-Cl = - 0.2060 

tram-Cl = -0.2165 
S 

3s 1.6682 

3P, 1.8020 

3PY 1.8020 

3Pz 1.0201 

tram-Cl 

3s 1.5272 

3P, 1.9311 

(continued) 
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Complex Orbital populations Atomic charges 

[OS(NS)(C~)~H~O] 1 - OS 

6s 0.8656 

6p, 0.8679 
6PY 0.8669 
6pz 0.8462 
Sd,l 0.5592 
5d,z 1.0860 
5dw 1.0354 
5d+,,z 0.6533 
5d,, 2.0000 

cis-Cl 

3s 1.4981 
3P, 1.7851 
3P3J 1.9535 
3PZ 1.8929 

OS 

6s 0.8653 
6p, 0.8681 
6PY 0.8681 
6p, 0.845 1 
Sd,z 0.5988 
5L 1.1093 
5%, 1.1093 
5d,z_,,z 0.5884 
5%y 2.0000 

cis-Cl 

3s 1.5029 
3P, 1.7963 
3PY 1.9554 
3PZ 1.9418 

OS = -0.8524 
N = +0.1738 
0 = -0.3485 
c&Cl = -0.1964 
transCl= -0.1876 

osmium in thionitrosyl and nitrosyl complexes shows 
that the charge on osmium in the nitrosyl complex 
is more negative than that in the thionitrosyl com- 
plex. The larger negative charge on the osmium in 
the nitrosyl complex suggests that the NO ligand 
is a poorer rr-acceptor than the NS ligand. Photo- 
electron spectra of the core and valence electrons 
and molecular orbital calculations for [CpCr(CO)2- 
(NX)] (X = S or 0) also support the description 
of NS as a better n-acceptor [21,32]. Both “MO 
and r4N NMR spectra have been measured for the 
purazoylborate thionitrosyl complexes and their 

SPY 
3Pz 

N 

2s 
2PX 

2P3’ 
2PZ 

S 

1.9311 
1.8271 

1.2055 
1.1569 
1.1979 
1.3366 

OS = -0.7805 
N = +0.1031 
S = -0.1676 
k-Cl -0.1296 = 
tram-0 = -0.0709 
H = +0.2136 

3s 
3P, 
SPY 

3PZ 

tram-0 

1.6629 
1.7566 
1.7159 
0.9722 

2s 1.3323 
2PX 1.2291 
QJY 1.9823 

2Pz 1.5272 

N 

2s 1.2954 
2PX 1.1502 

2PY 1.1502 

2Pz 1.2304 

0 

2s 1.6766 

2PX 1.7647 
2PY 1.7647 
2Pz 1.1425 

tram-Cl 

3s 1.5013 
3P, 1.9297 
3PY 1.9297 
3PZ 1.8269 

nitrosyl analogues [33]. These studies revealed 
similar bonding features to those observed for os- 
mium complexes. 

For [Os(NS)C14(HzO)] ‘--, upon substituting Hz0 
for Cl in the trans position, the charge on osmium 
decreases and those on NS increase. For [Os(NO)- 
Cls12-, cis-Cl is a better electron acceptor from 
the central osmium atom than @an&l while the 
reverse is true for [OS(NS)C~,]~-. For [Os(NX)- 
Cls]2-, the chloro ligand tram to a NS group is 
a better electron acceptor than the chloro ligand 
tram to a NO group. 
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Orbital Population 
Upon substituting a NS ligand for a NO ligand 

in [Os(NX)C1,JZ-, there is an increase in the N 2P, 
and X P, populations and a decrease in the OS 5d, 
population (Table 2). Similar changes have been 
observed upon substituting an aquo ligand for a 
chloro ligand in osmium-thionitrosyl complexes, 
[Os(NS)CLL]“- (L = HzO, n = 1; L = Cl, n = 2). 
For nitrogen, the lowest positive charge and larger 
2P, population in the [OS(NS)CI,]~- complex ion 
is indicative of greater n-backbonding in this com- 
plex. 

The tram Effect 
The tram effect in complexes containing NO or 

NS is usually discussed in terms of competition for 
u- and rrelectron density by groups trans to each 
other. A simple bonding model consistent with the 
observations discussed above, is that decreasing the 
strength of the o-component and increasing the 
strength of rr-component of a ligand increases the 
potential for bonding of the metal o-orbital tram 
to it and shows shortening of the bond. On the 
other hand, increasing the strength of the u-com- 
ponent and decreasing the strength of the n-com- 
ponent reduces the potential for bonding of the 
metal a-orbital trans to it and shows lengthening 
of the bond. The shortening of the bond trans to 
the NO+ ligand [for example: M-pans-L and M-cis-L 
bond distances (A) in Csz [Os(NO)Fs] *Hz0 [34] 
1.947(5), 1.986(9)a; Os(NO)(HgCl)Cl,(PPh,>, [27] 
2.37(2), 2.42(2); (P&)? [Os(NO)C13(SnC1&] [28] 
2.364(4), 2.38O(l)a] and lengthening of bond tram 
to NS+ ligand [for example: M-trans-L and M- 
cis-L bond distances (A) in [Os(NS)Cl,(PPh,),] 
[ 121 2.399(3), 2.387(3)a; (PPh4)[Os(NS)Cl,(H,0)] 
[13] 2.178(2), 2.0-2.1 (calculated from the co- 
valent radius of OS(H) and O)“, average of cis values] 
have been observed. 
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