New orrho-Metallated Dirhodium(I1) Compounds

ELIZABETH C. MORRISON and DEREK A. TOCHER* *Department of Chemistry, University College London, 20 Gordon Street, London WCIH OAJ, U.K.* (Received August 22, 1988)

ortho-Metallation reactions involving a multiply bonded dimetal unit are rare. However, there are several reports $[1-5]$ of *ortho*-metallated triarylphosphines bridging a single rhodium-to-rhodium bond. Stereochemically the products of such reactions seem to be very favourable. As far as we are aware, similar reactions have not been reported for mixed alkyl-aryl phosphines. The extension of the synthetic route to the latter class of phosphine ligands is the subject of this report.

Experimental

 $Rh_2(O_2CCH_3)_4$ and $Rh_2(O_2CC(CH_3)_3)_4$ were prepared by literature methods [6]. All other eagents were obtained from normal commercial suppliers.

 $Rh_2(O_2CCH_3)_2[PhMeP(C_6H_4)]_2.2CH_3CO_2H$

 $Rh_2(O_2CCH_3)_4.2MeOH$ (0.26 g, 0.52 mmol) was refluxed with $PPh₂Me$ (0.24 g, 1.22 mmol) in glacial acetic acid for 45 min. During this time the colour of the solution changed from orange to deep red. Acetic acid and unreacted diphenylmethylphosphine were removed *in vacuo*. The resulting red gum was dissolved in the minimum amount of $CH₂Cl₂$ and was eluted down a column of silica gel $(60-120 \text{ mesh})$. A mauve band was eluted with hexane/dichloromethane/diethyl ether (40/40/20) and a red band with methanol (100%). The mauve band was collected and the solvent removed under reduced pressure. The residue was treated with water $(3 \times 20 \text{ cm}^3)$ and then the fine mauve powder filtered off and air dried; yield 0.15 g (35%). *Anal.* Calc. for $C_{34}H_{38}O_8$ -P2Rh2: C, 48.6; H, 4.6; P, 7.4. Found: C, 47.9; H, 4.7; P, 8.1%. 31P NMR (CDC13, 162 MHz): AA'XX' centred at δ 4.64 ppm.

 $Rh_2(O_2CC(CH_3)_3)_2[PhMeP(C_6H_4)]_2.2(CH_3)_3CCO_2H$ $Rh_2(O_2CC(CH_3)_3)_4$ (0.14 g, 0.24 mmol) was refluxed for 45 min in pivalic acid (10 cm^3) to which $PPh₂Me$ (0.15 g, 0.78 mmol) was added. The deep red reaction mixture was cooled and the volatile components removed under vacuum. The red gum was redissolved in CH_2Cl_2 (3 cm³) and loaded on a column of silica gel $(60-120 \text{ mesh})$. The product was eluted as a mauve band using hexane/dichloromethane/diethyl ether (40/40/20). The solvent was removed and the product treated with water (3×50) $cm³$) to remove any excess pivalic acid. The mauve solid was filtered off and dried in air for 8 h; yield 0.11 g (54%). *Anal.* Calc. for $C_{46}H_{62}O_8P_2Rh_2$: C, 54.9; H, 6.2; P, 6.2. Found: C, 55.0; H, 6.7; P, 5.6%. $31P$ NMR (CDCl₃, 162 MHz): AA'XX' centred at 68.66 ppm.

Results and Discussion

Reaction of $Rh_2(O_2CR)_4$ $(R = Me, CMe_3)$ in $RCO₂H$ with a slight excess of $PPh₂Me$ gave mauve powders which analysed (C,H,P) well as $Rh_2(O_2CR)$ - $[PhMeP(C_6H_4)]_2$ ²RCO₂H. The ³¹P NMR spectrum of each compound was observed to be an AA'XX' pattern at 25 \degree C and therefore it was deemed very unlikely that we had prepared simple axial adducts of the dirhodiumtetracarboxylate core [7]. In addition we were able to oxidise both compounds electrochemically at potentials significantly removed from those at which the compounds $Rh_2(O_2CR)_4$. $2PPh₂Me$ are observed to be oxidised. The compound $Rh_2(O_2CCH_3)_2$ [PhMeP(C_6H_4)] $_2$ 2CH₃CO₂H was oxidised in $CH₂Cl₂/0.1$ M TBABF₄ solution at $+0.92$ V, while the related pivalato derivative could be oxidised at $+0.89$ V. In contrast, the axial adducts of dirhodium tetraacetate are generally oxidised at potentials greater than 1 V. It is also worth noting that both these compounds are easier to oxidise than is the related triphenylphosphine compound Rh_2 . $(O_2CCH_3)_2 [Ph_2P(C_6H_4)]_2$ ² 2CH₃CO₂H (+1.04 V) [2], a result which is expected from consideration of the relative electronic effects of the various bridging ligands.

Although we have been unable to obtain a crystalline sample of either of the carboxylic acid adducts, conclusive proof for the correctness of our deductions about the formulation of our products is provided by the preliminary X-ray structure determination of the readily prepared pyridine adduct**

^{*}Author to whom correspondence should be addressed.

^{**}Preliminary crystal data for $Rh_2(O_2CC(CH_3)_3)_2[PhMeP (C_6H_4)$ ₂.2C₅H₅N.2CHCl₃: $M = 1203.50$; monoclinic, space group $C2/c$, $a = 38.238(9)$, $b = 12.312(4)$, $c = 23.253(5)$ A; $\beta = 111.67(2)$ °, $U = 10172(4)$, $D_c = 1.57$ g cm⁻³, μ (Mo K α) = 10.62 cm⁻¹, $Z = 8$, $\lambda = 0.71073$ Å; crystal dimensions 0.2 \times 0.18×0.3 mm³. The data were corrected for Lorentz, polarisation and absorption effects. The structure was solved by *(continued overleaf)*

Fig. 1. The molecular structure of the molecule $Rh_2(O_2CC (CH_3)_3)_2[PhMeP(C_6H_4)]_2.2C_5H_5N.$ Important parameters: $Rh(1)-Rh(2)$ 2.535(5), $Rh(1)-O(1)$ 2.164(24), $Rh(1)-O(3)$ 2.072(28), Rh(l)-P(1) 2.204(12), Rh(l)-C(35) 2.029(36), $Rh(1)-N(1)$ 2.271(32), $Rh(2)-O(2)$ 2.168(23), $Rh(2)-O(4)$ 2,195(27), Rh(2)-P(2) 2.192(11), Rh(2)-C(22) 1.996(35), Rh(2)-N(2) 2.306(34) A; N(1)-Rh(1)-Rh(2) 160.2(7), $N(2)-Rh(2)-Rh(1) 160.1(8)°$.

 $Rh_2(O_2CC(CH_3)_3)_2$ [PhMeP(C_6H_4)] $_2$ 2C_5H_5N . This compound is obtained as its dichloroform solvate by the slow evaporation of a chloroform/pyridine solution of $Rh_2(O_2CC(CH_3)_3)_2$ $[PhMeP(C_6H_4)]_2$. $2(CH_3)_3CO_2H$.

The structure consists of a dinuclear rhodium core bridged by cisoid pivalate groups and two diphenylmethylphosphine ligands in which *ortho-metallation* has occurred at one of the phenyl rings of each phosphine (see Fig. 1). The axial sites are occupied by pyridine molecules. The rhodium-rhodium bond, 2.535(5) A, is somewhat shorter than that observed in $Rh_2(O_2CCH_3)_2[Ph_2P(C_6H_4)]_2.2C_5H_5N$, 2.556(2) A [2]. Despite the lower steric requirements of the $[PhMeP(C_6H_4)]$ ⁻ bridging ligands, the geometry about the rhodium ions is still significantly distorted. For example, the Rh-Rh-N bonds are significantly non-linear, $160.2(7)$ and $160.1(8)^\circ$, and the torsion angles about the rhodium-to-rhodium bond fall in the range 11.9-18.0'.

Investigations are continuing to extend further the range of compounds available.

Acknowledgements

We wish to thank Johnson Matthey plc for generous loans of rhodium trichloride and the SERC for financial support (E.C.M.) and for provision of the X-ray equipment.

References

- A. R. Chakravarty, F.A. Cotton and D. A. Tocher, J. *Chem. Sot., Chem. Commun.,* (1984) 501.
- A. R. Chakravarty, F. A. Cotton, D. A. Tocher and J. H. Tocher, *Organometallics, 4 (1985) 8.*
- F. A. Cotton and K. Dunbar, J. *Am. Chem. Sot., 109 (1987) 3142.*
- F. A. Cotton, K. Dunbar and M. G. Verbruggen, J. *Am. Chem. Sot., 109 (1987) 5498.*
- F. Barcelo, F. A. Cotton, P. Lahuerta, M. Sanau, W. Schwotzer and M. A. Ubeda, Organometallics, 6 (1987) 1105.
- G. A. Rempel, P. Legzdins, H. Smith and G. Wilkinson, *Znorg. Synth., 13 (1972) 90.*
- E. B. Boyar and S. D. Robinson, J. *Chem. Sot., Dalton Trans., (1985) 629.*

direct methods and refined by full-matrix least-squares. The poor quality of the crystal (2148 reflections with $I > 3\sigma(I)$ out of 7 133 unique reflections measured) and the presence of two extensively disordered molecules of $CHCl₃$ in the asymmetric unit result in a high residual, *R =* 0.1102; however, the important structural features of the molecule are not in doubt. Problems associated with the structure determination will be discussed in detail in the full paper.