The Crystal and Molecular Structure of $[(\mu-4,4'-Dimethyl-2,2'-bipyridyl)bis(pentacarbonyl-chromium(0))]$: The First Structural Determination of a Complex Containing a Bridging 2,2'-Bipyridyl Ligand

BERNADETTE S. CREAVEN, CONOR LONG*

School of Chemical Sciences, The National Institute for Higher Education, Glasnevin, Dublin 9, Ireland

R. ALAN HOWIE, GEOFFREY P. McQUILLAN

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB9 2UE, U.K.

and JOHN LOW

Carnegie Laboratory of Physics, University of Dundee, Dundee DD1 4HN, U.K.

(Received September 30, 1988)

Species of the type $M(CO)_5(bipy)$, containing monodentate 2,2'-bipyridyl (bipy) ligands, have been detected as intermediates following the photolysis of $M(CO)_6$ (M = Cr, Mo, or W) in the presence of excess bipy [1-3]. These intermediates have not been isolated and the mechanism of the following chelation step, to yield $M(CO)_4(bipy)$, is not clear; the excess of ligand used to promote the formation of the monodentate species may influence the kinetics of the chelation step.

Recently, the stable monodentate complexes $M(CO)_5(dpm)$ [4] and $M(CO)_5(dipyam)$ [5] (M = Cr or Mo; dpm = di-2-pyridylmethane, $(C_5H_5N)_2CH_2$; dipyam = di-2-pyridylamine, $(C_5H_5N)_2NH$) have been isolated from the reactions of dpm or dipyam with the photochemically generated $M(CO)_5(thf)$. These complexes are converted on gentle warming to the corresponding chelate species, with the liberation of $M(CO)_6$ and free ligand, eqn. (1):

$$2M(CO)_5L \xrightarrow{\Delta} M(CO)_4L + M(CO)_6 + L$$
(1)

Clearly this reaction must involve a dissociative step.

These observations led us to investigate further the formation of non-chelate bipyridyl complexes and we have now obtained $[(\mu-(4,4'-dimethyl-2,2'$ bipyridyl)bis(pentacarbonylchromium(0))], [Cr-(CO)₅]₂(dmbipy) (1), from the reaction of the solid (*cis*-cyclooctene)pentacarbonylchromium(0) [6] with dmbipy in pentane at room temperature. The compound was identified by elemental analysis and very small red-brown crystals, of marginal quality for X-ray work, were obtained from toluene solution at -30 °C. Toluene was the only solvent suitable for growing crystals as more polar solvents react with 1, while 1 is not sufficiently soluble in the less polar alkane solvents. Also, compound 1 contains a chiral centre and many of the crystals grown from toluene appeared to be twinned. Efforts are currently underway to improve the quality of the single crystals.

An X-ray structure determination to R = 0.10confirms the bipyridyl-bridged binuclear structure of the molecule (Fig. 1). This is the first fully authenticated example of a stable non-chelate 2,2'-bipyridyl complex. Principal bond lengths and angles are all within expected ranges [7], although the orientations of Cr(1)-N(1) and Cr(2)-N(12) relative to the ligand skeleton suggest a degree of crowding of the $Cr(CO)_5$ moieties. A striking and unexpected feature is the mutually perpendicular orientation of the ligand pyridyl rings (the experimentally determined angle is 89°). The UV–Vis data for 1 indicate that the pyridyl rings are not coplanar [8], and so we consider that this perpendicular arrangement represents the preferred molecular geometry and is not simply imposed by crystal-packing requirements.

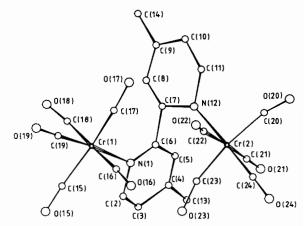


Fig. 1. Structure of $[(\mu-4,4'-dimethyl-2,2'-bipyridyl)bis(penta$ carbonylchromium(0))].

The binuclear complex transforms on warming in solution to $Cr(CO)_4$ (dmbipy) and $Cr(CO)_6$ (eqn. (2)); the mechanism of this process will be discussed in a forthcoming paper [8]. Our observations raise the possibility that the binuclear species $[M(CO)_5]_2$ -(bipy) may also be involved in the photoinduced reactions mentioned above.

$$[Cr(CO)_{5}]_{2}(dmbipy) \xrightarrow{\Delta} Cr(CO)_{4}(dmbipy) + Cr(CO)_{6}$$
(2)

© Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

Experimental

Crystal Data for 1

 $C_{22}H_{22}N_2O_{10}Cr_2$, M = 568.4; monoclinic, $P2_1$; a =9.321(20), b = 12.361(13), c = 10.564(2) Å; $\beta = 100.09(16)^\circ$, U = 1198 Å³, Z = 2, $D_c = 1.575$ g cm⁻³; λ (Mo K α) = 0.71069 Å, μ = 9.41 cm⁻¹. Data were measured on a Nicolet P3 four-circle diffractometer, using an ω -2 θ scan technique, to yield 939 observations with $I > 3\sigma(I)$. The positions of all nonhydrogen atoms were determined using SHELXS86. Structure factors for neutral atoms were taken from ref. 9. After refinement R was 0.14, but after excluding about 120 weak reflections with $\Delta F/F > 0.4$ the values of R and R' fell to 0.10 and 0.13, respectively, for 155 refined parameters and 816 F values. The Cr atom was refined anisotropically; other atoms were treated isotropically and because of the limit and quality of the data no attempt was made to locate the H atoms nor to determine the absolute configuration of the molecule. The maximum feature in the final difference map was 0.8e Å⁻³ and the distribution of ΔF against $|F_{\alpha}|$ and $(\sin 2\theta)^2$ was satisfactory. Thus, although the structure is determined with no great accuracy, there is no reason to assume that it is in any way incorrect.

Acknowledgement

The authors thank the European Economic Community for funds to conduct this research.

References

- 1 R. J. Kazlauskas and M. S. Wrighton, J. Am. Chem. Soc., 104 (1982) 5784.
- 2 M. J. Schadt and A. J. Lees, Inorg. Chem., 25 (1986) 672.
- 3 K. Kalyanasundaram, J. Phys. Chem., 92 (1988) 2219.
- 4 D. E. Marx and A. J. Lees, Organometallics, 5 (1985) 2072.
- 5 C. Long and G. P. McQuillan, unpublished results.
- 6 F.-W. Grevels and V. Skibbe, J. Chem. Soc., Chem. Commun., (1984) 681.
- 7 (a) U. von Schubert, D. Neugebauer and P. Friedrich, Acta Crystallogr., Sect. B, 34 (1978) 2293; (b) R. Goddard, S. D. Killops, S. A. R. Knox and P. Woodward, J. Chem. Soc., Dalton Trans., (1978) 1255; (c) U. Schubert, P. Friedrich and O. Orama, J. Organomet. Chem., 144 (1978) 175; (d) B. A. Karcher and R. A. Jacobson, J. Organomet. Chem., 132 (1977) 387; (e) B. J. Helland, M. H. Quick, R. A. Jacobson and R. J. Angelici, J. Organomet. Chem., 132 (1977) 95.
- 8 B. S. Creaven, F.-W. Grevels and C. Long, manuscript in preparation.
- 9 J. A. Ibers and W. C. Hamilton (eds.), *International Tables for X-Ray Crystallography*, Vol. 4, Kynoch Press, Birmingham, 1974.