Correlation Between Geometric Changes of the Ligands and Extinction Coefficient of the MLCT Absorption Band in Ru(II)-Diimine Complexes

LUISA DE COLA and FRANCESCO BARIGELLETTI* *Istituto FRAE-CNR, Via de' Castagnoli 1, 40126 Bologna, Italy* (Received September 15, 1988)

Abstract

Extended Hiickel MO calculations have been performed on the 2,2'-bi-1,8-naphthyridine ligand, **1,** as a function of the dihedral angle between the two planar moieties, θ . The spectroscopic and electrochemical properties of the complexes $Ru(bpy)_2$ -²⁺ with $I = 1, 2, 3$ and 4 (where 2, 3 and 4 are 3,3'-(methylene),-bridged derivatives of **1** with $n = 2$, 3 and 4 respectively) have been correlated to the calculated LUMO properties of 1 at varying θ . The unusual hypochromism shown by the complexes containing $L = 2$, 3 and 4 is discussed in terms of current models for $Ru \rightarrow L$ localized transitions and taking into account the non-planarity of the poly-methylene bridged ligands.

Ru(II)-polypyridine complexes have been extensively investigated in view of possible applications in a number of light driven or light generating processes $[1-7]$. A long standing problem with this family has been the description of the lowest energy metal-to-ligand charge transfer, MLCT, state of the prototype $\mathbb{R}^p(\mathbf{h}_p)$ \mathbb{Z}^+ (\mathbf{h}_p y = 2,2'-bipyridine). Either ligand-localized or interligand-delocalized models have been proposed [7-91. In complexes of the $Ru(\text{huv})$, I^{2+} type, where I is a bidentate ligand easier to reduce than bpy, localization of the excitation takes place and is based on the Ru-L chromophore [7]. On this basis, it is possible to investigate the relationships between energy and shape of the lowest unoccupied molecular orbital, LUMO, of L with (i) energy of the MLCT absorption band, (ii) energy of the emission band, and (iii) potentials for reduction of free L and $Ru(bpy)_2L^{2^+}$ complexes [7, lo]. Even if some 300 complexes have been reported [7], systematic accounts on the role played by geometric and electronic factors of ligand origin on the MLCT absorption intensity (usually, the extinction coefficient, $\epsilon > 10^4$ cm⁻¹ M⁻¹) are not frequently encountered in the literature $[11-13]$.

In this study we correlate some properties of the LUMO of L with the hypochromism shown by

a larger family employing annelated ligands recently investigated by Thummel and coworkers [14-161 $(L = 1, 2, 3, 3, 4, 4, 1)$ is the 2,2'-bi-1,8-naphthyridine ligand and 2, 3 and 4 are $3.3'$ -(methylene)_nbridged derivatives of 1 with $n = 2$, 3 and 4 respectively and $\epsilon = 10840$, 9350, 6840, 5600 cm⁻¹ M⁻¹ for $L = 1$, 2, 3 and 4 respectively). Abbreviations used are binap = $2,2'$ -bi-naphthyridine, and i-biq = 3,3'-biisoquinoline. Figure 1 shows molecular formulae. Table 1 collects some spectroscopic and electro-

some $Ru(bpy)_2L^{2+}$ complexes which are part of

chemical data. For comparison purposes, data for $Ru(i-biq)₂(bpy)²⁺$ are also reported [19]. For this complex, the Iigand involved in the first reduction and in the lowest energy MLCT transition is bpy, the MLCT states based on the i-biq ligand being very high in energy [20].

In order to obtain the LUMO properties of the (methylene)_n-bridged 2, 3 and 4 ligands we have performed EHMO calculations on 1 by changing θ , the dihedral angle between the two planes of the naphthyridine fragments. A justification for this procedure relies on the fact that the methylene bridge is expected not to affect the π conjugation, but only to cause geometric changes. θ was estimated as 20°, 55° and 80° for $n = 2$, 3 and 4 respectively [14]. The results of the calculations are listed in Table 2.

As mentioned above, for mixed ligand $Ru(bpy)_{2}$ - L^{2+} complexes with L larger than bpy, the first reduction is centered on the LUMO of L origin. As the lowest energy MLCT transition corresponds

^{*}Author to whom correspondence should be addressed. Fig. 1. Molecular formulae of the employed ligands.

TABLE 1. Spectroscopic and Electrochemical Data for $Ru(bpy)_{2}L^{2+}$ Complexes^a

L	$hv_{\text{max}}^{\text{b}}(\epsilon)$	$E_{\alpha x}$	E_{red} ^c	$hv^{\circ \circ d}$	$\Delta E_{1/2}$ ^e
	(eV)	(V)	(V)	(eV)	(eV)
1	2.16 (10840)	1.42	-0.53	2.06	1.95
$\mathbf{2}$	2.15(9350)	1.18	-0.76	2.05	1.94
$\overline{\mathbf{3}}$	2.18(6840)	1.18	-0.80	2.08	1.98
4	2.20 (5600)	1.33	-0.70	2.10	2.03
bpy^f	2.75 (11600)	1.17	-1.42	2.65	2.59

 ${}^{\text{a}}$ From ref. 14, unless otherwise specified. Solvent CH₃CN, $T = 25$ °C. Potentials are vs. SCE. **b**Lowest energy absorption maximum, see text. ^cFirst reduction. d_{hv} ^{oo} = $hv_{\text{max}} = 0.1 \text{ eV} [17, 18]. \text{ }^{e} \Delta E_{1/2} = e(E_{\text{ox}}-E_{\text{red}}), \text{ see}$ text. **f**From data for Ru(i-biq)₂(bpy)²⁺ [19], see text.

TABLE 2. Calculated Properties of the LUMO for binap Ligand

L, θ^a	E lumo (eV)	$a_{\text{N, calc}}^*$	R_{ML} (A)
1,0	-10.40	0.312	3.99
1,36	-10.29	0.273	4.04
1.76	-10.02	0.169	4.21
1.86	-9.95	0.141	4.27
bpy,0	-9.71	0.440	3.26

aDihedral angle between the planes of the molecular moibpy, 0 -9.71 0.440 3.26
 A Dihedral angle between the planes of the molecular moi-

eties, see text.

to electron promotion from a metal centered orbital to the LUMO, optical energies are expected to be linearly related to redox energies, $\Delta E_{1/2} = e(E_{\text{o}x} E_{\text{red}}$) [7], where *e* is the electron charge and $E_{\text{o}x}$ *and Ered* are the first oxidation and reduction potentials respectively. Figure 2 shows that such expectation is fulfilled for the complexes taken into account, providing evidence for the validity of the approach based on a localized Ru-L fragment.

Figure 3 shows a MO energy level diagram drawn according to the results of Table 1 and Fig. 2 and consistent with symmetry based interaction schemes, eqns. (1) and (2)

$$
h\nu^{\circ}{}^{\circ} = \Delta_{0j} + 2X \tag{1}
$$

$$
\Delta_{0j} = \Delta E_{1/2} - X \tag{2}
$$

where the spectroscopic energy $hv^{\infty} = hv_{\text{max}} - 0.1$ eV [17, 18] and Δ_{0i} is the energy separation between non-interacting orbitals.

According to current theories for CT transitions $[11, 12, 21]$, absorption intensities (Table 1) and L structure can be related as follows. The transition moment, μ , for a CT transition localized on a Ru-L unit is due to a 'transfer term' $[11, 21]$

$$
\mu = -\left(B_{0j}R_{\mathrm{ML}}e\right)/E_{0j} \tag{3}
$$

Fig. 2. Correlation between optical (absorption) and redox energies. Regression analysis gave $r = 0.998$, slope = 0.93, and intercept = 0.23 eV.

Fig. 3. Molecular orbital diagram depicting the relation between optical and electrochemical processes, see text. The interaction leading to $\pi d \rightarrow LUMO$ optical transfer of charge involves orbitals of the same symmetry [11].

where B_{0j} and E_{0j} are the resonance integral and the separation energy, respectively, between the zeroorder ground state ψ_0 and excited state ψ_j , and *RML* is the distance between the donor and acceptor sites. As an approximation we will use $E_{0i} = \Delta_{0i}$. For the lowest energy MLCT transition of a Ru-L chromophore and assuming that the Ru-L interaction only involves the chelating N, one obtains $[11, 21]$

$$
B_{0j} = a_N^* \beta_1 \tag{4}
$$

where a_N^* is the N contribution to the L based LUMO, and [11,21]

TABLE 3. Parameters Derived on the Basis of the Model for CT Transitions Localized on the Ru-L Fragment

L	μ a (eA)	$X^{\mathbf{b}}$ (eV)	$a_{N,exp}^*$ c
1	0.813	0.11	0.290
$\overline{2}$	0.754	0.11	0.263
3	0.643	0.10	0.221
4	0.577	0.07	0.204
bpyd	0.743		0.440

^aFrom $\mu = (f/[v_{\text{max}} \cdot 1.085 \times 10^{-5}])^{1/2}$ and the oscillator strength $f = 4.6 \times 10^{-9}$ (e)($\nu_{1/2}$), with ν expressed in cm⁻¹. Spectroscopic data from ref. 14 $(\nu_{1/2}$ was taken as 2500 cm^{-1} in each case). **P**From eqns. (1) and (2) of the text. ²From eqn. (5) of the text. c From data for Ru(i-biq)₂- $(bpy)^{2+}$ [19], see text.

$$
\mu = -\left(2^{1/2}a_N^*\beta_1 R_{\mathrm{ML}}e\right)/\Delta_{0j} \tag{5}
$$

In eqn. (5), $\beta_1 = \langle \pi d | H | p_N \rangle$ is the resonance integral between πd and p_N atomic orbitals.

Table 3 collects μ , X, and $a_{N,exp}^*$ parameters as derived from the spectroscopic data of Table 1 or evaluated according to eqns. (1)–(5). β_1 was taken as 7400 cm^{-1} , see below. R_{ML} was calculated assuming Ru-N distances of 2.05 Å [22]. As one can see, the changes of $a_{N,exp}^*$ for L = 1, 2, 3 and 4 parallel those in absorption intensity (ϵ) for the lowest MLCT band of the related $Ru(bpy)_2L^{2+}$ complexes.

Figure 4 shows the θ dependence of $a_{N,exp}^*$ and $a_{\text{N, calc}}^*$. As expected on the basis of the model for the localized Ru-L chromophore, both the series of independently derived a_N^* coefficients follow the same dependence on θ . One concludes that for the examined complexes, the geometric changes of L affect the amount of mixing between metal centered and ligand centered orbitals. In the frame

Fig. 4. Dependence of the N atomic coefficients, $a_{N,\text{calc}}^*$ (0) and $a_{N,exp}^*$ (\bullet), on the dihedral angle, θ , between the two planar halves of L. The dashed line is only drawn for comparison purposes.

of the CT theories $[11, 12, 21]$ referred to, the reported hypochromism of the $Ru(bpy)_{2}L^{2+}$ complexes examined appears directly correlated to a reduced transfer of electronic charge from the Ru(I1) center to L.

Details of Calculations

A standard EH program (QCPE No. 344) was used. Bond lengths were taken as 1.36 and 1.49 A for the C-C distances in the aromatic ring and single bond respectively. The planar L were taken to lie on the yz plane, the z direction bisecting the N-Ru-N bite angle. The changes of θ were obtained by allowing disrotatory movements (by $\theta/2$) of the two molecular moieties of binap, with respect to the yz plane. For all ligands examined, the LUMO exhibited b_1 symmetry, under $C_{2\nu}$ description, as identified on the basis of the p_x atomic contribution of the chelating N atoms $[11, 12]$. R_{ML} distances were calculated considering that the promoted electron spreads on the backbone of L according to the squared atomic coefficient for the LUMO. β_1 was estimated according to [21]

$$
h\nu^{\circ}{}^{\circ} = \Delta_{0j} + 2(a_N^* \beta_1)^2 / \Delta_{0j} \tag{6}
$$

We chose $\beta_1 = 7400 \text{ cm}^{-1}$ in order to obtain consistency with the data for $Ru(i-biq)_2(bpy)^{2+}$, *i.e.* for the Ru-bpy chromophore [19]. Literature values are β_1 = 7540, 6300 and 7780 cm⁻¹ for L = pyrimidine, pyridine and pyrazine, respectively [21].

Acknowledgement

This work was supported by Progetto Strategic0 CNR 'Reazioni di Trasferimento Monoelettronico'.

References

- 1 K. Kalyanasundaram, *Coord. Chem. Rev., 46* (1982) 159.
- 2 E. A. 8eddon and K. R. Seddon, *The Chemistry of Ruthenium,* Elsevier, Amsterdam, 1984.
- 3 N. Sutin and C. Creutz, *Adv. Chem. Ser., 168* (1978) 1.
- *4* T. J. Meyer, Prog. Inorg. *Chem., 30* (1983) 389.
- 5. R. A. Krause, *Struct. Bonding (Berlin), 67* (1987) 1.
- *6* V. Balzani, F. Bolletta, M. Ciano and M. Maestri, J. *Chem. Educ., 60* (1983) *447.*
- *7* A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser and A. von Zelewsky, *Coord. Chem. Rev., 84* (1988) *85,* and refs. therein.
- 8 M. K. De Armond and C. M. Carlin, *Coord. Chem. Rev., 46* (1982) 159.
- 9 E. Krausz, *Comments Inorg. Chem., 7* (1988) 139.
- 10 F. Barigelletti, A. Juris, V. Balzani, P. Belser and A. von

Zelewsky, Inorg. *Chem., 26 (1987) 4115,* and refs. therein.

- 11 P. Day and N Sanders, *J. Chem. Sot. A,* (1967) 1536.
- 12 A. Ceulemans and L. G. Vanquickenborne, *J. Am. C'hem. Sot., 103* (1981) 2238.
- 13 C. C. Phifer and D. R. McMillin, *Inorg. Chem.,* 25 (1986) 1329.
- 14 R. P. Thummel and F. Lefoulon, Inorg. *Chem., 26 (1987) 675.*
- 15 R. P. Thummel, F. Lefoulon and J. D. Korp, *Inorg.* Chem., 26 (1987) 2370.
- 16 R. P. Thummel, F. Lefoulon and J. D. Korp, *Inorg. Chim. Acta, 128 (1987) 245.*
- 17 T. Oshawa, K. W. Hanck and M. K. De Armond,J. *Electroanal.* Chem., 175 (1984) 229.
- 18 J. V. Caspar and T. J. Meyer, *J. Am. Chem. Soc.*, 105 (1983) 5583.
- 19 A. Juris, F. Barigelletti, V. Balzani, P. Belser and A. von Zelewsky, *Inorg. Chem., 24 (1985) 202.*
- *20* P. Belser, A. von Zelewsky, A. Juris, F. Barigelletti, A. Tucci and V. Balzani, *Chem. Phys. Lett., 89 (1982)* 101.
- 21 D. E. Richardson and H. Taube, J. *Am. Chem. Sot., 105 (1983) 40.*
- *22* D. P. Rillema, D. S. Jones and H. A. Levy, J. *Chem. Sot., Chem. Commun., (1979) 849.*