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Reducing agents (RLi and RMgX) and nucleo- 
philes (amines and alcohols) have been reported to 
react with alkylidynetricobalt clusters R’CCoa(CO)s 
to afford apically-substituted tricobalt clusters and/or 
COB-, depending on the reaction conditions and 
the nature of the original R’ substituent [l-3]. 
These reactions are believed to proceed via an initial 
nucleophilic attack at a coordinated CO ligand [4, 
51. However, spectroscopic data (NMR and IR) for 
the proposed acyl intermediates are scarce, obscur- 
ing the course of such reactions. As part of our 
interest in CO-reduction pathways in polynuclear 
clusters [6], coupled with the uncertainty associated 
with the site of nucleophilic attack in R’CCO~(CO)~ 
clusters, we report our results on the hydridic reduc- 
tion using PhCCoa(CO)9 (1) to give the thermally 
unstable formyl cluster PhCCos(CO)s(CHO)- (2) 
and its decomposition to give PhCCos(CO)s’- (3) 
and COG- (5). 

The reduction of PhCCo3(CO)9 (1) [7] with one 
equiv. of LiEtaBH in THF at -78 “C affords a 
brownishgreen solution containing the polynuclear 
formyl complex 2 in quantitative yield. Complex 2 
was characterized in situ by the standard techniques. 
The proton ‘H NMR spectrum of 2 (da-THF) at 
-78 “C exhibited a broad multiplet centered at 
6 7.1, along with a broad resonance at 6 12.6 in a 
5: 1 integral ratio for the aromatic and formyl pro- 
tons, respectively [8]. 13C NMR analysis of 2 (-78 
“C; ds-THF), using 13CO-enriched 1 [9] displayed 
two broad resonances at 6 247 and 6 206 in a 1:8 
integral ratio. The low-field resonance is readily 
assigned to the formyl moiety, while the latter 
resonance is ascribed to the remaining eight carbonyl 
groups. The rapid equilibration of the terminal CO 
groups in 2 is not totally unexpected when one 
considers the facile rate of CO exchange in 1 and 
related derivatives [lo]. The ‘H and 13C NMR reso- 
nances gradually broaden as the temperature is 
raised to -50 ‘C, disappearing altogether upon 
the complete decomposition of 2 by -20 “C. 
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Fig. 1. Infrared spectra of the carbonyl region for (A) Ph- 
CCo3(CO)s(CHO)- (2) and (B) the decomposed formyl 
solution containing PhCCo3(C0)9’- (3) and Co(CO)4- (5). 
Both spectra were recorded in THF at -72 “C. 

The decomposition of 2 was easily followed using 
variable-temperature FT-IR spectroscopy (THF 
solvent). Figure 1A shows the IR spectrum of 2 
recorded at -72 “C. Particularly informative is 
the C-O stretching band at 1642 cm-’ that is readily 
assigned to the formyl moiety [8]. As the formyl 
solution is warmed, decomposition is observed 
starting at -40 “C and is complete by -20 “C 
(vi& supru). The resulting IR spectrum (cooled back 
to -72 “C for comparative purposes) is shown in 
Fig. lB, revealing the paramagnetic cluster PhCCoa- 
(CO),‘- (3) and COG- (5) [l l] as the two 
major decomposition products. Quantitative FT-IR 
analysis indicated that 3 and 5 were formed in 38% 
and 41% yield, respectively. The identity of the 
compound(s) associated with the two minor C-O 
stretches (1820 and 1793 cm-‘; Fig. IB) is currently 
unknown and attempts to isolate this material have 
been unsuccessful. Finally, additional proof for the 
presence of 3 was ascertained by EPR spectroscopy 
of the final reaction solution. A well-resolved, iso- 
tropic EPR spectrum centered at g = 2.019 was 
observed, in agreement with that published for 
PhCCo3(CO)9’- [12]. The course of events for these 
reactions is depicted in eqn. (1). 

Next we attempted to stabilize 2 towards de- 
composition by using the known hydrogen atom 
donors 9,lOdihydroanthracene and tri-n-butyltin 
hydride. Such additives have proven effective in 
retarding formyl decomposition in complexes that 
proceed by a metalIoformy1 C-H bond scission 
process [13]. However, our efforts proved unsuc- 
cessful as 2 decomposed at rates indistinguishable 
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from reactions without these additives. The ability 
of 2 to function as a hydride donor was also ex- 
amined, since many anionic formyl complexes re- 
versibly release hydride faster than their decom- 
position rates [6b, 141. When 2 (in THF) was treated 
with Fe(CO)S (1.1 equiv.) at -78 “C, no reaction 
was observed. Warming to room temperature led 
only to the formation of 3 and 5; no Fe(CO),(CHO)- 
or HFe(CO&- were observed. The absence of trans- 
formylated products indicates that formyl 2 de- 
composes in preference to hydride liberation. 

The observation of paramagnetic 3 is important 
in connection with alternative metalloformyl de- 
composition processes and the intervention of such 
radicals in catalytic cycles. Compound 3 represents 
the second unequivocal paradigm reported for a 
metalloformyl C-H bond scission process [15] 
we believe may be attributed to the redox stability 
associated with 3. In comparison to related radical- 
chain decomposition reactions involving metallo- 
formyl complexes [ 13, 161, 3 is unique because it 
is electrochemically stable. Typically, redox instabil- 
ity of the initial metalloradical drives the decompo- 
sition reaction in a chain-propagating fashion to the 
corresponding metal-hydride product [ 171. However, 
once formed, PhCCo3(CO)9’- (3) remains inert, 
a feature ascribed to the redox stabilization associ- 
ated with the polynuclear cluster core [ 181. 

The reaction of hydride with other RCCO~(CO)~ 
clusters (R = H, Cl, Br, Me) is currently being ex- 
amined. These results along with our reduction 
studies with the heterometallic tetrahedrane clusters 
PhCCozW(CO)sCp and PhPFeCoz(CO)9 will be 
reported shortly. 
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