Cobalt-59 NMR Spectra of some Cobalt(III) Complexes of Bi- and Poly-arsines

MICHAEL G. FITZPATRICK, LYALL R. HANTON*

Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand

WILLIAM LEVASON* and MARK D. SPICER

Department of Chemistry, The University of Southampton, Southampton S09 5NH, U.K.

(Received July 24, 1987)

Cobalt-59 NMR spectra for a variety of cobalt(III) complexes of bi and polydentate phosphorus, arsenic and antimony ligands have recently been reported, and approximate chemical shift ranges characteristic of the various donor sets established [1, 2]. The value for the CoAs₆³⁺ moiety was based upon the single example available $[Co{o-C_6H_4(AsMe_2)_2}_3](BF_4)_3$ ($\delta = -320$ ppm relative to K₃Co(CN)₆), and was *ca.* 5000 ppm to low frequency of the only previous report [3] in $[Co(triars)_2]I_3^{**}$. As pointed out at the time data on further examples are desirable, and these are provided below.

Experimental

Physical measurements were carried out as described previously [1, 2]. ⁵⁹Co NMR data were obtained as before [1], and shifts were reported relative to external aqueous $K_3Co(CN)_6$ ($\delta = 0$), using the high frequency positive convention. The following complexes were made by literature methods and had satisfactory analyses: $[Co\{o-C_6H_4AsMe_2)_2\}_2$ - I_2]I [4], $[Co\{o-C_6H_4(AsMe_2)_2\}_3](BF_4)_3$ [1], $[Co\{MeAs(o-C_6H_4AsMe_2)_2\}_1]$ [6], $[Co\{As(CH_2CH_2-CH_2AsMe_2)_3\}_1]ClO_4$ [5].

Bis(1,1,1-tris(dimethylarsinomethyl)ethane)cobalt-(III) Tetrafluoroborate

Cobalt(II) acetate hydrate (0.062 g, 0.32 mmol) was dissolved in water (5 cm³), two drops of glacial acetic acid added and the solution deoxygenated.

The ligand (0.29 g, 0.76 mmol) was dissolved in deoxygenated ethanol (15 cm³) and added to the cobalt acetate solution. The resulting pale orange solution was heated to reflux, cooled and stirred in air overnight. Fluoroboric acid (5 cm³, 40%) was added, and the solution concentrated at 60 °C *in vacuo*, and the product finally precipitated by adding diethyl ether (15 cm³). This was collected, washed with ether and dried *in vacuo*. Anal. Calc. for $C_{22}H_{54}As_6B_3COF_{12}$: C, 24.3; H, 5.0. Found: C, 24.1; H, 5.1%.

Bis(bis(o-dimethylarsinophenyl)methylarsine)cobalt-(III) Tetrafluoroborate

Cobalt(II) tetrafluoroborate hydrate (0.41 g, 1.2 mmol) and the ligand (1.1 g, 2.4 mmol) were refluxed in a 1:1 mixture of acetone/water (150 cm³) for two hours. The yellow-green solution was cooled and then treated with fluoroboric acid (50 cm³, 45%). Air was bubbled through the solution overnight and the yellow precipitate which formed (0.90 g, 60%) was collected, washed with ether and dried *in vacuo. Anal.* Calc. for $C_{34}H_{46}As_6B_3COF_{12}$: C, 33.37; H, 3.79. Found: C, 33.24; H, 3.83%.

Trans-bis(2,2'-biphenyldiyl(dimethylarsine)diiodocobalt(III) Iodide

Cobalt(II) iodide hydrate (0.70 g, 2.2 mmol) was dissolved in hot ethanol (40 cm³) and added to a hot ethanol solution (20 cm³) of the ligand (0.80 g, 2.2 mmol). The resulting deep red-brown solution was cooled and treated with a slight excess of hydro-iodic acid. A dark brown powder formed on standing overnight. The powder was collected and crystallized by slow evaporation from 1:1 ethanol/dichloromethane to yield deep red-brown needles (0.90 g, 70%). Anal. Calc. for $C_{32}H_{40}As_4CoI_3$: C, 33.02; H, 3.46; I, 32.71. Found: C, 33.03; H, 3.94; I, 34.64%.

o-Phenylenebisdimethylarsinetris(3-dimethylarsinopropyl)arsinecobalt(III) Tetrafluoroborate

[Co{As(CH₂CH₂CH₂AsMe₂)₃]I₂]ClO₄ (0.247 g, 0.27 mmol) was dissolved in a 1:1 mixture of ethanol/dichloromethane and the solution deoxygenated. Diarsine (0.076 g, 0.27 mmol) was added and the red-brown solution was refluxed for two hours. The solution was cooled and treated with an excess of fluoroboric acid (25 cm³, 45%). An orange-brown powder formed on standing overnight. The powder was collected and crystallized by slow evaporation from ethanol to yield dark orange-brown crystals. *Anal.* Calc. for C₂₅H₅₂As₆B₃CoF₁₂: C, 26.77; H, 4.67. Found: C, 26.9; H, 4.7%.

© Elsevier Sequoia/Printed in Switzerland

^{*}Authors to whom correspondence should be addressed.

^{**}The formula of the triarsine is unclear due to a typographical error in ref. 3. We assumed in ref. 1 that the complex was $[Co{MeAs(C_6H_4AsMe_2)_2]_1}]_1$ the only example described in the literature at that time. However it may have been a complex of MeAs(CH₂CH₂CH₂AsMe₂)₂ (personal communication to L.R.H. from Dr R. G. Cunninghame). Since ⁵⁹Co NMR shifts are relatively insensitive to ligand structure, the conclusions in ref. 1 are unaffected.

Complex	δ(⁵⁹ Co) ^a	$E_{\max} (\times 10^3 \text{ cm}^{-1})^{\text{b}}$	Solvent
$[Co\{o-C_6H_4(AsMe_2)_2\}_3](BF_4)_3$	-320	23.6(470)	dmso
	-120^{c}	23.5(480)	H ₂ O
$[Co\{MeC(CH_2AsMe_2)_3\}_2](BF_4)_3$	-190	21.65(595)	dmso
	+120	21.5(530)	H ₂ O
$[Co{MeAs(o-C_6H_4AsMe_2)_2}_2](BF_4)_3$	-30	23.6(580)	dmso
	+100	23.5(640)	н,о
$[Co{As(CH_2CH_2CH_2AsMe_2)_3[o-C_6H_4(AsMe_2)_2]}](BF_4)_3$	+195	14.74(119), 17.9sh(550), 20.8(4634)	dmso
$(Co{PhAs}(CH_2CH_2CH_2AsMe_2)_2)_2 (BF_4)_3'^d$	+160	20.1(sh)	MeCN
$[Co{MeAs(o-C_6H_4AsMe_2)_2}I_3]$	+4625	16.15(2750), 20.3(3050)	CH ₂ Cl ₂
trans-[Co $\{0$ -C $_6$ H ₄ (AsMe ₂) ₂ $\}_2$ I ₂]I	+4370	14.8(125), 18.0sh, 21.0(5750)	dmso
	+4290	14.7(120), 17.9sh, 20.8(5100)	CH ₂ Cl ₂
$[Co{As(CH_2CH_2CH_2AsMe_2)_3}]I_2]ClO_4$	+4060	15.6sh(1000), 21.8(4480)	CH ₂ Cl ₂
trans- $[Co{2,2'-(C_6H_4A_sMe_2)_2}_2I_2]I$	+4890	13.9(237), 17.1sh, 20.0(5630)	CH_2Cl_2
	+4830	13.9(222), 17.1sh, 20.1(5500)	dmso

 ${}^{b}E_{mol} (dm^3 cm^{-1} mol^{-1})$ in ^aRelative to external $K_3C_0(CN)_6$ in $H_2O(\delta = 0)$, high frequency +ve convention ±50 ppm. ^cReported in error as -520 in ref. 1. ^dNot obtained analytically pure. parentheses.

Results and Discussion

The cobalt-59 NMR chemical shifts and relevant UV-Vis data for four examples of CoAs₆ chromophores (including the previously studied [1] [Co{o- $C_6H_4(AsMe_2)_2$ ³⁺ are shown in Table I, and confirm the identification of the characteristic shift range as ca. -350 to +200 ppm from the reference $[Co(CN)_6]^{3-}$. The cobalt resonances are single broad $(W_{1/2} = ca. 12-18\,000 \text{ Hz})$ lines, the linewidth reflecting the rapid relaxation of the quadrupolar cobalt nucleus (⁵⁹Co, I = 7/2) due to the low symmetry imposed by the steric constraints of the chelate ligands and to chemical shift anisotropy effects at the high magnetic field strength (8.45 T)[7]. Although the major influence on δ (⁵⁹Co) is the donor set, studies with cobalt(III) complexes of O and N donor ligands have identified small but significant effects due to the solvent, the solute concentration and the temperature [8]. For the present CoAs₆ complexes the effects of concentration were negligible compared with the estimated experimental uncertainty in measuring δ (ca. ±50 ppm) due to the large linewidth. The complexes were insufficiently soluble in halocarbons, but data for dimethylsulphoxide and water solutions are given in Table I, which shows that δH_2O is up to *ca*. 200 ppm to high frequency of $\delta dmso$.

Such solvent dependence is reasonable in view of the 3+ charge in the cations, which is expected to lead to strong interaction with polar solvents. For cobalt(III) ammines significant differences in linewidth as a function of solvent have been ascribed to N-H-solvent H-bonding [9]. Support for this explanation comes from the similar linewidths in the two solvents for the CoAs₆ species, where H-bonding is not expected. An attempt to prepare [Co{PhAs- $(CH_2CH_2CH_2AsMe_2)_2$ (BF₄)₃, by the route successfully used for analogues with $o-C_6H_4(AsMe_2)_2$ and $MeC(CH_2A_3Me_2)_3$, produced a dull yellow powder, but this could not be obtained analytically pure. However in MeCN solution this complex had a $\delta(^{59}Co)$ resonance of +160 ppm, good evidence for a CoAs₆ cation, and illustrates the value [2] of the characteristic cobalt chemical shift for identifying the cobalt environment even in impure materials.

Table 1 also contains data on further examples of CoAs₃I₃ and CoAs₄I₂ entities, cf. 4902, 5398 ppm in '[Co(triars)₂]I₃' indicating that iodide coordination was present in the latter sample in solution and explaining the erroneous shift ascribed to the CoAs₆ type [8]. It is noticeable that solvent effects are smaller here than in the CoAs₆ system, probably reflecting weaker interaction with the lower charge on the ions.

Acknowledgement

We thank the SERC, UGC of New Zealand and University of Otago for support. We thank Dr R. G. Cunninghame for providing the ligand bis(o-dimethylarsinophenyl)methylarsine.

References

- 1 H. C. Jewiss, W. Levason and M. Webster, Inorg. Chem., 25, 1997 (1986).
- 2 H. C. Jewiss, W. Levason, M. D. Spicer and M. Webster, Inorg. Chem., 26, 2102 (1987).

- 3 R. L. Martin and A. H. White, Nature (London), 223, 394 (1969).
- 4 R. S. Nyholm, J. Chem. Soc., 2071 (1950).
- 5 G. Kordosky, G. S. Benner and D. W. Meek, *Inorg. Chim.* Acta, 7, 605 (1973).
- 6 R. G. Cunninghame, R. S. Nyholm and M. L. Tobe, J. Chem. Soc., 5800 (1964).
- 7 S. C. F. Au-Yeung and D. R. Eaton, J. Magn. Reson., 52, 351 (1983).
- 8 R. G. Kidd and R. J. Goodfellow, in R. K. Harris and B. E. Mann (eds.), 'NMR and the Periodic Table', Academic Press, New York, 1978.
- 9 S. C. F. Au-Yeung and D. R. Eaton, J. Magn. Reson., 52, 366 (1983).