Reactions of 2-Thiopyridone Rhodium(III) Complexes with Tertiary Phosphines

ANTONY J. DEEMING and M. NAFEES MEAH

Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ, U.K. (Received April 9, 1987)

Abstract

The rhodium(III) complexes containing 2-thiopyridone (pySH) and its conjugate anion 2-thiopyridonato (pyS) as the only ligands, $[Rh(pyS)_2-(pySH)_2]Cl$, $[Rh(pyS)_3(pySH)]$, and $[Rh(pyS)_3]$, react with the tertiary phosphines PMe₂Ph, PPh₃, Ph₂PCH₂PPh₂ (dppm), and Ph₂PCH₂CH₂PPh₂ (dppe) to give mixed pyS/tertiary phosphine complexes of the type $[Rh(pyS)_3L]$, $[Rh(pyS)_3L_2]$, and [Rh- $(pyS)_2L_2]ClO_4$ where L represents a single phosphorus donor atom. These compounds were characterized mainly by ¹H and ³¹P NMR spectroscopy.

Introduction

We recently described a series of rhodium(III) complexes (1-3) containing only 2-thiopyridone (pySH) and 2-thiopyridonato (pyS) as ligands [1,2].

In examining the reactivity of these complexes we have synthesized several new phosphine complexes containing pyS. Mixed pyS/phosphine complexes have been reported previously by Wilkinson *et al.* [3-5] and by Robinson *et al.* [6,7]. However, apart from an isolated report of $[Rh(pyS)_2(PPh_3)]BF_4$ [5], for which no spectroscopic data were given, there are no previous examples of rhodium(III) 2-

thiopyridonato phosphine complexes. The synthetic route given here is particularly useful since in principle any tertiary phosphine (or other neutral ligand) might be introduced after the pyS or pySH ligands.

Results

Dimethylphenylphosphine

Treatment of [Rh(pyS)₂(pySH)₂]Cl (1) with PMe₂Ph in refluxing 2-ethoxyethanol followed by treatment with AgClO₄ gave the bis chelate complex formulated as [Rh(pyS)₂(PMe₂Ph)₂][ClO₄] (4). The ¹H NMR spectrum (Table I) shows a virtually coupled 1:2:1 triplet at δ 1.67 showing that the phosphines are mutually trans. Furthermore the Me groups are not diastereotopic and so there is a plane of symmetry through the metal phosphorus axis [8]. Hence 4 contains the two chelate ligands in a plane with the donor sulphur atoms cis to each other and likewise for the nitrogen atoms. The IR spectrum of [Rh-(pyS)₂(PMe₂Ph)₂][ClO₄] (4) shows an uncoordinated perchlorate absorption (1095 cm^{-1}), as expected for the formulation of the complex as a cation. The structure of 4 relates to that of the parent molecule (1) by simple replacement of the two trans monodentate pySH ligands by two PMe₂Ph ligands.

Treatment of $[Rh(pyS)_3(pySH)]$ (2) with PMe₂Ph in refluxing toluene followed by column chromatography affords three major products identified as the tris-chelate complex (3) [1, 2], a bis-phosphine complex $[Rh(pyS)_3(PMe_2Ph)_2]$ (5), and a monophosphine complex $[Rh(pyS)_3(PMe_2Ph)]$ (6). The 200 MHz ¹H NMR spectrum of complex 5 shows two virtually-coupled triplets indicating that the phosphines are *trans* and the methyl groups diastereotopic. This is only consistent with the structure shown for 5

© Elsevier Sequoia/Printed in Switzerland

TABLE I. ¹H NMR Data for Rhodium(III) Thiopyridonato Phosphine Derivatives. Number Scheme:

Compound	Chemical shifts (d) ^a		
$[Rh(pyS)_2(PMe_2Ph)_2]ClO_4 (4)$	6.33(d) (H ³), $6.86(t)$ (H ⁵), $8.40(d)$ (H ⁶), $7.16(m)$, $7.31(m)$ (H ⁴ + Ph), $1.67(t)$ (PMe, J 7.0 ^b)		
$[Rh(pyS)_3(PMe_2Ph)_2]$ (5)	5.80(t) (H ⁵), 6.25(d) (H ³), 7.53(d) (H ³), 8.08(d) (H ⁶), 8.20(d) (H ⁶), 6.78(m), 6.95(m), 7.16(m), 7.45(m) (other pyS signals + Ph), 1.72(t) (PMe, J 7.2 ^b), 1.83(t) (PMe, J 7.2 ^b)		
$[Rh(pyS)_3(PMe_2Ph)]$ (6)	6.26(t) (H ⁵), 6.59(d) (H ³), 6.70(t) (H ⁵), 7.59(d) (H ⁶), 8.17(t) (H ⁶), 8.26(d) (H ⁶), 6.80(m), 7.18(m), 7.25(m), 7.38(m) (other pyS signals + Ph), 1.89(d) (PMe, J 10.0), 1.93(d) (PMe, J 10.0)		
[Rh(pyS) ₃ (PPh ₃)] (7)	6.30(m) (H ³ , H ⁵), $8.14(d)$ (H ⁶), $8.16(d)$ (H ⁶), $6.60(m)$, $7.25(m)$, $7.60(m)$, $7.80(m)$ (other pyS signals + Ph)		
[Rh(pyS) ₂ (dppm)]ClO ₄ (8)	$6.76(d) (H^3), 6.93(t) (H^5), 7.34(t) (H^4), 8.30(d) (H^6), 7.25(m), 7.48(m), 7.66(m) (Ph), 5.30(t) (CH2)$		
[Rh(pyS) ₃ (dppm)] (9)	$6.20(t) (H^5), 6.33(d) (H^3), 8.12(d) (H^6), 8.30(d) (H^6), 7.25(m), 7.50(m), 7.80(m) (Ph), 3.60(m), 4.20(m) (CH2)$		
[Rh(pyS) ₂ (dppe)]ClO ₄ (10)	6.48(d) (H ³), $6.83(t)$ (H ⁵), $8.13(d)$ (H ⁶), $7.17(m)$, $7.26(m)$, $7.56(m)$ (other pyS signals + Ph), $2.80(m)$, $3.40(m)$ (CH ₂ CH ₂)		

^aIn CDCl₃ at 200 MHz. J in Hz; assignable pyS signals given first; multiplicities are approximate. ${}^{b}J_{obs} = {}^{2}J(PH) + {}^{4}J(PH)$.

which has two monodentate and one chelating pyS ligand in a square plane. The methyl groups in [Rh- $(pyS)_3(PMe_2Ph)$] (6) are also diastereotopic; the 400 MHz ¹H NMR spectrum has two methyl doublets. The molecule contains two chelating and one monodentate pyS ligands and the two monodentate ligands (pyS and PMe_2Ph) are *cis*. Four structures (6a-6d) with three non-equivalent pyS ligands are each consistent with the spectra. We favour structure 6a because this relates directly to 2 with pySH replaced by PMe_2Ph but cannot distinguish these isomers experimentally.

Treatment of $[Rh(pyS)_3]$ with PMe₂Ph in refluxing toluene gives the same products as from a similar reaction of $[Rh(pyS)_3(pySH)]$ with this phosphine. Since the tris-chelate compound $[Rh(pyS)_3]$ is formed in significant quantities in the latter reaction, the most probable pathway involves the initial dissociation of pySH from $[Rh(pyS)_3(pySH)]$ and subsequent addition of PMe₂Ph.

Triphenylphosphine

[Rh(pyS)₃(pySH)] reacts with PPh₃ in refluxing toluene to give the mono-phosphine complex [Rh-(pyS)₃(PPh₃)] (7) as the major product. The ¹H NMR spectrum is consistent with a structure like that of the PMe₂Ph analogue.

6 L = PMe₂Ph 7 L = PPh₃ 9 L = η^1 -dppm

Dppm

Reaction of $[Rh(pyS)_2(pySH)_2]Cl$ with Ph_2PCH_2 -PPh₂ (dppm) in refluxing 2-ethoxyethanol followed by the addition of AgClO₄ gives the cationic complex $[Rh(pyS)_2(dppm)]ClO_4$ (8). The pyS ligands are equivalent (¹H NMR evidence) (Table I). The ³¹P{¹H} NMR spectrum (Table II) shows a single doublet [J(RhP) 96.3 Hz] consistent with the tris-chelate

Compound	δ ^c (ligand)	δ (complex)	Coordination shift (Δ)	¹ J (RhP) (Hz)	<i>trans</i> ligand
$[Rh(nvS)_{a}(PMe_{a}Ph)_{a}]ClO_{a}(A)$	-187.0	-137.6	+494	86 5	P
$[Rh(pyS)_2(PMe_2Ph)_2] (5)$	-187.0	-142.2	+44.8	90.0	P
$[Rh(pyS)_3(PMe_2Ph)]$ (6)	-187.0	-125.7	+61.3	116.0	N
$[Rh(pyS)_3(PPh_3)] (7)$	-148.0	-107.5	+40.5	121.0	N
[Rh(pyS)2(dppm)]ClO4 (8)	-163.2	-159.2	+4.0	96.5	N
$[Rh(pyS)_3(dppm)]$ (9) ^b	-163.2	-109.6	+53.6	118.5	Ν
$[Rh(pyS)_2(dppe)]ClO_4$ (10)	-154.2	-87.3	+66.9	112.5	N

TABLE II. ³¹P {¹H} NMR Data for Rhodium(III) Thiopyridonato Phosphine Complexes^a

^aReferenced to P(OMe)₃ which is at 141 ppm relative to 85% H₃PO₄. ^bNon-coordinated P: δ -168.2. ²J(PP) \approx 32 Hz. ^cFrom ref. 8.

structure shown. The compound $[Rh(pyS)_3(dppm)]$ (9) is obtained from the treatment of $[Rh(pyS)_3(pySH)]$ with dppm in refluxing toluene. The ³¹P{¹H} NMR spectrum shows two phosphine signals at $\delta -109.6$ and -168.2, only the former showing ¹⁰³Rh-³¹P coupling (118.7 Hz). The dppm ligand is therefore monodentate and the structure is probably analogous to that of $[Rh(pyS)_3(PMe_2Ph)]$ (6).

Dppe

The reaction of $[Rh(pyS)_2(pySH)_2]Cl$ with dppe $(Ph_2PCH_2CH_2PPh_2)$ in refluxing 2-ethoxyethanol followed by treatment with AgClO₄ gives $[Rh(pyS)_2-(dppe)]ClO_4$ (10), the NMR spectra of which confirm the tris-chelate formulation (Table I).

Discussion

The smallest ${}^{1}J(RhP)$ values are for $[Rh(pyS)_{3}$ -(PMe₂Ph)₂] (5) and $[Rh(pyS)_{2}(PMe_{2}Ph)_{2}]CIO_{4}$ (4) in which the phosphine ligands are mutually *trans* (Table II). Small metal-phosphorus coupling is normally associated with a high *trans*-influence ligand *trans* to phosphorus [9]. The ${}^{1}J(RhP)$ values are larger for $[Rh(pyS)_{3}L]$ in the order PPh₃ > Ph₂PCH₂PPh₂.> PMe₂Ph which is consistent with previous observations that the value increases with aryl for alkyl substitution at phosphorus [10]. This has been attributed to increased π -acceptor properties [10] or to an increase in s-character at phosphorus on aryl substitution [11].

Chemical shifts on coordination (Δ) are positive and Mann *et al.* [12] have proposed that smaller Δ are associated with a smaller opening of R-P-R angles on coordination as expected for bulkier R groups. Hence for the monodentate ligands reported here the smallest Δ is for PPh₃ in compound 7.

In chelating diphosphine complexes large positive Δ are normal for five-membered rings but fourmembered rings give ³¹P shifts at higher field than expected. That is Δ is very much smaller but still positive [13, 14]. Δ values for the diphosphine compounds 8 to 10 agree with these generalizations. In particular the differences in Δ between chelating and η^1 dppm are very clear and allow an easy assignment of structure.

The ¹³C NMR spectra of the compounds [Rh-(pyS)₂(diphos)]ClO₄ (8 and 10) do not show any long-range coupling between pyS carbon atoms and ³¹P nuclei as observed for [Ru(pyS)₂(CO)(PPh₃)] and related species [6, 7]. The observation of this would have allowed us to position P *trans* to N atoms with confidence. All the pyS carbon atoms, except for the *ipso*-carbon, appear as singlets; the small splitting of the *ipso*-carbon signal results from ¹⁰³Rh coupling. However, this certainly does not mean that the N atoms are mutually *trans* in the tris-chelate compounds. For steric reasons it is more probable that the S atoms are *trans* as found for the compounds 2 and [RhPd₂(pyS)₄(C₄H₇)₂]BF₄ [15].

Experimental

Compounds 1 to 3 were prepared as reported [1, 2].

Preparation of $[Rh(pyS)_2(PMe_2Ph)_2][ClO_4]$ (4)

A mixture of $[Rh(pyS)_2(pySH)_2]Cl(1)$ (0.100 g, 1.72 × 10⁻⁴ mol) and PMe₂Ph (0.05 g, 3.62 × 10⁻⁴ mol) in 2-ethoxyethanol (20 cm³) was refluxed for 8h. The solvent was removed under vacuum and replaced by acetone (5 cm³). AgClO₄ (0.035 g, 1.68×10^{-4} mol) was added, the precipitated AgCl filtered off, and diethylether layered carefully over the acetone solution, and the mixture left to give yellow crystals. These were recrystallized from chloroform-diethylether mixtures to give 4 as fine yellow crystals. Anal. Found: C, 44.0; H, 4.3; N, 3.8; Cl, 5.3. Calc. for C₂₆H₃₀N₂ClO₄P₂RhS₂: C, 44.6; H, 4.3; N, 4.0; Cl, 5.1%.

Reaction of $[Rh(pyS)_3(pySH)]$ (2) with PMe_2Ph

A mixture of compound 2 (0.136 g, 2.51×10^{-4} mol) and PMe_2Ph (0.038 g, 2.50×10^{-4} mol) in toluene (15 cm³) was refluxed for 8 h. The solvent was removed under reduced pressure and the residue eluted through a 5% deactivated neutral alumina column with a dichloromethane/chloroform (10:1) mixture. Seven fractions were collected. The first gave mer- $[Rh(pyS)_3]$ (3) (0.02 g, 18%): the third gave the bis-phosphine compound [Rh(pyS)₃- $(PMe_2Ph)_2$ (5) (0.03 g, 18%). Anal. Found: C, 52.5; H, 4.9; N, 5.7. Calc. for C₃₁H₃₄N₃P₂RhS₃: C, 52.4; H, 4.8; N, 5.9; the fifth fraction gave the monophosphine compound [Rh(pyS)₃(PMe₂Ph)] (6) (0.05 g, 35%). Anal. Found: C, 48.3; H, 4.1; N, 7.2. Calc. for C₂₃H₂₃N₃PRhS₃: C, 48.3; H, 4.0; N, 7.4%. Both 5 and 6 gave red oils which slowly solidified. The other fractions were not characterized.

Preparation of $[Rh(pyS)_3(PPh_3)]$ (7)

A suspension of $[Rh(pyS)_3(pySH)]$ (2) (0.100 g, 1.84 × 10⁻⁴ mol) and PPh₃ (0.048 g, 1.83 × 10⁻⁴ mol) in toluene (15 cm³) was refluxed for 8 h. The solvent was removed under reduced pressure and the residue eluted through a 5% deactivated alumina column with dichloromethane/chloroform (10:2 ν/ν) mixture. One of the several fractions gave $[Rh(pyS)_3-(PPh_3)]$ (7) (0.064 g, 50%). An analytically pure sample was not obtained but the compound was identified by comparison with compound **6**.

Preparation of $[Rh(pyS)_3(dppm)]$ (9)

A suspension of $[Rh(pyS)_3(pySH)]$ (2) (0.250 g, 4.60 × 10⁻⁴ mol) and dppm (0.176 g, 4.60 × 10⁻⁴ mol) in toluene (15 cm³) was refluxed for 12 h. Work-up as above gave compound 9 as a salmon-pink solid (0.225 g, 60%) characterized by ³¹P{¹H} and ¹H NMR spectra.

Preparation of $[Rh(pyS)_2(dppe)]ClO_4(10)$

A suspension of $[Rh(pyS)_2(pySH)_2]Cl(1)$ (0.100 g, 1.72×10^{-4} mol) and dppe (0.068 g, 1.71×10^{-4} mol) in 2-ethoxyethanol was refluxed for 8 h. The

solvent was removed under vacuum and replaced with dichloromethane (10 cm³). AgClO₄ (0.035 g, 1.68 × 10^{-4} mol) was added and the precipitate of AgCl filtered off. Diethylether was carefully layered over the dichloromethane solution which slowly deposited red crystals which were recrystallized from dichloromethane/diethylether to give compound **10** as orange crystals (0.05 g, 35%). Anal. Found: C, 50.45; H, 3.9; N, 3.3; Cl, 9.5. Calc. for C₃₆H₃₂ClN₂O₄P₂RhS₂· 2/3CH₂Cl₂: C, 50.2; H, 3.8; N, 3.2; Cl, 9.4%.

Preparation of $[Rh(pyS)_2(dppm)]ClO_4(8)$

This compound was prepared similarly. The product was crystallized from dichloromethane/ diethylether mixtures to give 8 as yellow crystals (39%). Anal. Found: C, 50.4; H, 3.7; Cl, 6.8. Calc. for $C_{35}H_{30}ClN_2O_4P_2RhS_2 \cdot 1/3CH_2Cl_2$: C, 50.8; H, 3.7; N, 3.4; Cl, 7.1%.

Acknowledgements

We thank University College London for a studentship (for M.N.M.) and Johnson Matthey plc for a generous loan of rhodium trichloride.

References

- 1 A. J. Deeming and M. N. Meah, *Inorg. Chim. Acta, 47,* L13 (1986).
- 2 A. J. Deeming, K. I. Hardcastle, M. N. Meah, P. A. Bates, H. M. Dawes and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., in press.
- 3 J. D. Gilbert and G. Wilkinson, J. Chem. Soc. A, 1749 (1969).
- 4 J. D. Gilbert, D. Rose and G. Wilkinson, J. Chem. Soc. A, 2765 (1970).
- 5 R. W. Mitchell, J. D. Ruddick and G. Wilkinson, J. Chem. Soc. A, 3224 (1971).
- 6 P. Mura, B. G. Olby and S. D. Robinson, J. Chem. Soc., Dalton Trans., 2101 (1985).
- 7 A. Alteparmakian, B. G. Olby and S. D. Robinson, Inorg. Chim. Acta, 104, L5 (1985).
- 8 J. F. Nixon and A. Pidcock, Ann. Rev. NMR Spectrosc., 2, 345 (1969).
- 9 A. Pidcock, R. E. Richards and L. M. Venanzi, J. Chem. Soc., A, 1707 (1966).
- 10 S. O. Grimm, R. L. Keiter and W. L. McFarlane, *Inorg. Chem.*, 6, 1133 (1967).
- 11 F. Ogilvie, R. J. Clark and J. G. Verkade, *Inorg. Chem.*, 8, 1904 (1969).
- 12 B. E. Mann, C. Masters and B. L. Shaw, J. Chem. Soc. A, 8, 1904 (1969).
- 13 C. A. Tolman, Chem. Rev., 77, 313 (1977).
- 14 S. O. Grimm, W. L. Briggs, R. C. Borth, C. A. Tolman and J. P. Jesson, *Inorg. Chem.*, 13, 1095 (1974).
- 15 A. J. Deeming, M. N. Meah, P. A. Bates and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., in press.