Luminescence from the Eu^{3+} Ion in D_{4d} Symmetry

G. BLASSE

Physical Laboratory, University of Utrecht, P.O.B. 80.000, 3508 TA Utrecht, The Netherlands (Received September 17, 1987)

The emission of the Eu³⁺ ion (4f⁶) is well known and has been studied intensively [1,2]. It is often used as a probe of site symmetry. Actually the emission spectrum of the Eu³⁺ ion is very simple, since the emitting level (${}^{5}D_{0}$) is nondegenerate. Usually the emission transitions ${}^{5}D_{0}-{}^{7}F_{0,1,2}$ are studied. The ${}^{5}D_{0}-{}^{7}F_{0}$ transition is weak anyhow, the ${}^{5}D_{0}-{}^{7}F_{1}$ transition (magnetic dipole) dominates if the Eu³⁺ ion is on a site with inversion symmetry, the ${}^{5}D_{0}-{}^{7}F_{2}$ transition (forced electric-dipole) dominates if there is no inversion centre [1, 3].

A very peculiar site symmetry in this aspect is D_{4d} . This predicts the following number of lines in the Eu³⁺ emission spectrum: ${}^{5}D_{0}{}^{-7}F_{0}$:0, ${}^{5}D_{0}{}^{-7}F_{1}$:1, ${}^{5}D_{0}{}^{-7}F_{2}$:0, ${}^{5}D_{0}{}^{-7}F_{4}$:2. The ${}^{5}D_{0}{}^{-7}F_{2}$ transition is forbidden under this site symmetry, although inversion symmetry is definitely absent. We have found one example of such a case, *viz*. the emission of Eu³⁺ in lanthanide decatungstates [4]. In this letter we draw attention to the fact that this site symmetry occurs in good approximation also in nonmolecular solids. The emission colour of the Eu³⁺ ion on sites with this symmetry is different from what is expected at first sight.

Structural Data

In the Eu³⁺-decatungstate molecule the site symmetry of the Eu³⁺ ion is D_{4d} if only the nearest neighbours are considered. In the solid the symmetry is lowered to C_2 [4]. This D_{4d} symmetry is usually not observed in non-molecular solids. However, we found at least two compounds where D_{4d} symmetry

is a good approximation to the real site symmetry, viz. GdB₃O₆ and YF₃.

The crystal structure of GdB_3O_6 has been solved by Abdullaev *et al.* [5]. The lanthanide ions occupy distorted ten-coordinated polyhedra with site symmetry C_2 . However, by using a fourfold axis parallel [001], it can be seen that D_{4d} is a good approximation for the site symmetry. Two O^{2-} ions are nearly on that axis, and the remaining eight are in the neighbourhood of the corners of two squares perpendicular to that axis and 45° rotated relative to each other. This coordination polyhedron has no inversion symmetry, not even in approximation.

The crystal structure of YF₃ is described as containing nine-coordinated lanthanide ions in a tricapped trigonal prism. However, one of the nine nearest neighbours is further away (2.6 Å) than the others (~2.3 Å) [6]. It is clear that such a site lacks inversion symmetry completely. The eight nearest F^- ions form approximately two squares, rotated 45° relative to each other and both perpendicular to the axis connecting Y³⁺ and the ninth F^- ion. This can also be considered as D_{4d} symmetry where the axis mentioned is the fourfold one.

Spectral Results and Discussion

Table I shows the integrated intensities of the Eu³⁺ emission lines of Eu³⁺-decatungstate [4], YF₃:Eu³⁺ [7] and GdB₃O₆:Eu³⁺ [8]. If these compositions are irradiated with ultraviolet light, they show an orange (not a red) emission. This is due to the fact that the intensity of the ${}^{5}D_{0}-{}^{7}F_{1}$ transition is much higher than that of the ${}^{5}D_{0}-{}^{7}F_{2}$ transition. Usually this is interpreted as an indication that the Eu³⁺ ion occupies a site with a symmetry near to inversion symmetry. This, however, is by no means the case in the compositions under consideration. The low ${}^{5}D_{0}-{}^{7}F_{2}$ intensity is due to the approximate D_{4d} symmetry which forbids this transition.

The fact that the ${}^{5}D_{0} - {}^{7}F_{2}$ transition is nevertheless observed with a non-negligible intensity is due to the deviation from exact D_{4d} symmetry. Undoubtedly the hypersensitive character of this transition

TABLE 1. Integrated Emission Intensities for the Eu³⁺ Ion in Three Compositions with Approximate D_{4d} Site Symmetry (the ${}^{5}D_{0} - {}^{7}F_{1}$ (magnetic dipole) intensity has been set 10)

Composition	⁵ D ₀ - ⁷ F ₀	${}^{5}D_{0}-{}^{7}F_{1}$	⁵ D ₀ - ⁷ F ₂	${}^{5}D_{0}-{}^{7}F_{4}$
Eu ³⁺ -decatungstate	< 0.1	10	2	4
YF ₃ :Eu ³⁺	0.1	10	2	6
GdB ₃ O ₆ :Eu ³⁺	0.1	10	2	5

[1-4] is responsible for the fact that a small deviation from D_{4d} symmetry is sufficient to result in a sizeable intensity.

That the actual site symmetry is lower than D_{4d} follows also from the number of ${}^{5}D_{0}-{}^{7}F_{1}$ and ${}^{5}D_{0}-{}^{7}F_{4}$ emission lines. The number expected for D_{4d} symmetry [2] is only observed if the resolving power is not too high. Otherwise a more extended splitting is observed. Its width is, however, small.

In conclusion, a low ${}^{5}D_{0} - {}^{7}F_{2}$ emission intensity does not prove that the site symmetry of the Eu³⁺ ion is near inversion symmetry. This is only true if the ${}^{5}D_{0}-{}^{7}F_{4}$ transition has also a low intensity. Otherwise the Eu³⁺ ion may occupy a site with (approximate) D_{4d} symmetry.

References

- 1 G. Blasse, in K. A. Gschneidner, Jr. and L. Eyring (eds.), 'Handbook on the Physics and Chemistry of Rare Earths', North Holland, Amsterdam, 1979, Chap. 34.
- R. D. Peacock, Struct. Bonding (Berlin), 22, 83 (1975).
 G. Blasse, A. Bril and W. C. Nieuwpoort, J. Phys. Chem. Solids, 27, 1587 (1966).
- 4 G. Blasse, G. J. Dirksen and F. Zonnevijlle, J. Inorg. Nucl. Chem., 43, 2847 (1981).
- 5 G. K. Abdullaev, Kh. S. Mamedov and G. G. Dzhafarov, Sov. Phys. Crystallogr., 20, 161 (1975).
- 6 A. F. Wells, 'Structural Inorganic Chemistry', 4th edn., Clarendon, Oxford, 1975.
- 7 G. Blasse and A. Bril, Philips Res. Rep., 22, 481 (1967).
- 8 Hao Zhiran and G. Blasse, Mater. Chem. Phys., 12, 257 (1985).